PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

New tool materials based on Ni alloys strengthened by intermetallic compounds with a high carbon content

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The concept of new tool materials, based on Ni alloys strengthened by intermetallic compounds, intended for operations in high temperatures is presented in the hereby paper. The proposed chemical composition and the results of microstructure investigations as well as hardness testing in as-cast condition - are given. Design/methodology/approach: A test melt of a mass of approximately 1 kg was done in a vacuum furnace, and cast into a ceramic mould. The microstructure of the investigated material was examined by a light microscope Axiovert 200 MAT and the scanning electron microscope FIB Zeiss NEON 40EsB CrossBeam. Dilatometric experiment was performed by means of the Adamel Lhomargy DT 1000 dilatometer . Findings: The main components of the microstructure of the nickel-base investigated alloy are: the ? phase, which constitutes the matrix and the ?' phase. This ?' phase occurs as fine globular precipitates as well as in a form of primary Ta carbides of MC type. Primary carbides of irregular shapes are uniformly distributed not forming agglomerates. The assumed volume fraction of the primary carbides was achieved. Research limitations/implications: Identification of microstructure components on Ni-based materials strengthened by particles of intermetallic phases of a high carbon content. Practical implications: New tool material for hot-working. Originality/value: The new chemical compositions of tool materials based on Ni alloys strengthened by intermetallic compounds with high carbon content.
Słowa kluczowe
Rocznik
Strony
5--12
Opis fizyczny
Bibliogr. 28 poz.
Twórcy
autor
  • Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland, pbala@agh.edu.pl
Bibliografia
  • [1]R.W.K. Honeycombe, H.K.D.H. Bhadeshia, Steels. Microstructure and properties, Second Edition, Edward Arnold, London,1995.
  • [2]A.K. Sinha, Physical metallurgy handbook, The McGraw-Hill Companies, Inc., 2003.
  • [3]P. Bała, J. Pacyna, J. Krawczyk, Continuous heating from as-quenched state in a new hot-work steel, Archives of Materials Science and Engineering 28/9 (2007) 517-524.
  • [4]P. Bała, J. Pacyna, J. Krawczyk, The kinetics of phase transformations during temperings of Cr-Mo-V medium carbon steel, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 79-82.
  • [5]P. Bała, J. Krawczyk, J. Pacyna, The kinetics of phase transformations during tempering of low alloy medium carbon steel, Archives of Materials Science and Engineering 28/2 (2007) 98-104.
  • [6]P. Bała, J. Pacyna, J. Krawczyk, The kinetics of phase transformations during tempering in the new hot working steel, Journal of Achievements in Materials and Manufacturing Engineering 22/2 (2007) 15-18.
  • [7]A. Hernas, High-temperature creep resistance of steels and alloys, Silesian University of Technology Press, Gliwice, 1999 (in Polish).
  • [8]K.C. Antony, JOM Journal of the Minerals, Metals and Materials Society 39 (1983) 52.
  • [9]J.Ch. Shin et. al, Effect of molybdenum on the microstructure and wear resistance of cobalt-base Stellite hardfacing alloys, Surface and Coatings Technology 166 (2003) 117-126.
  • [10]J.R. Davies, Metallurgy, Processing and Properties of Superalloys, ASM Speciality Handbook: Heat Resistant Materials, ASM International, 1997.
  • [11]R.F. Decker, The evolution of wrought age-hardenable superalloys JOM Journal of the Minerals, Metals and Materials Society 58/9 (2006) 32-36.
  • [12]M. Zielińska, J. Sieniawski, M. Poręba, Microstructure and mechanical properties of high temperature creep resisting superalloy Rene 77 modified CoAl2O4, Archives of Materials Science and Engineering 28/10 (2007) 629-632.
  • [13]P. Jonsta, Z. Jonsta, J. Sojka, L. Cizek, A. Hernas, Structural characteristics of nickel super alloy INCONEL 713LC after heat treatment, Journal of Achievements in Materials and Manufacturing Engineering 21/1 (2007) 29-32.
  • [14]J. Adamiec, Ni3Al alloy's properties related to high-temperature brittleness, Archives of Materials Science and Engineering 28/6 (2007) 333-336.
  • [15]S.A. Sajjadi, S.M. Zebarjad, Study of fracture mechanisms of a Ni-Base superalloy at different temperatures, Journal of Achievements in Materials and Manufacturing Engineering 18 (2006) 227-230.
  • [16]A. Onyszko, K. Kubiak, J. Sieniawski, Turbine blades of the single crystal nickel based CMSX-6 superalloy, Journal of Achievements in Materials and Manufacturing Engineering 32/1 (2009) 66-69.
  • [17]M. Zielińska, K. Kubiak, J. Sieniawski, Surface modification, microstructure and mechanical properties of investment cast superalloy, Journal of Achievements in Materials and Manufacturing Engineering 35/1 (2009) 55-62.
  • [18]S.A. Sajjadi, S.M. Zebarjad, Effect of temperature on tensile fracture mechanisms of a Ni-base superalloy, Archives of Materials Science and Engineering 28/1 (2007) 34-40.
  • [19]A. Nowotnik, Mechanical and structural aspects of high temperature deformation in Ni alloy, Journal of Achievements in Materials and Manufacturing Engineering 26/2 (2008) 143-146.
  • [20]J.M. Nell, N.J. Grant, Multiphase strengthened nickel base superalloys containing refractory carbide dispersions, Superalloys 1992, The Minerals, Metals and Materials Society, 1992, 113-121.
  • [21]Y. Zhu, S. Zhang, T. Zhang, J. Zhang, Z. Hu, X. Xie, Ch. Shi, A new way to improve the superalloys, Superalloys 1992, The Minerals, Metals and Materials Society, 1992, 145-154.
  • [22]K.L. Zeisler-Mashl, B.J. Pletka, Segregation during solidification in the MAR-M247 system, Superalloys 1992, The Minerals, Metals and Materials Society, 1992, 175-184.
  • [23]J. Bik, T. Borek, Z. Gola, K. Olszewski, L. Sojka, A. Zatwardnicki, Ni based hot-work tool alloys, Patent No. 148 790, 1989 (in Polish).
  • [24]Y. Birol, Thermal fatigue testing of Inconel 617 and Stellite 6 alloys as potential tooling materials for thixoforming of steels, Materials Science and Engineering A 527 (2010) 1938-1945.
  • [25]C. Stöcker , M. Zimmermanna, H.-J. Christ, Z.-L. Zhanb, C. Cornet, L.G. Zhao, M.C. Hardy, J. Tong, Microstructural characterisation and constitutive behaviour of alloy RR1000 under fatigue and creep-fatigue loading conditions, Materials Science and Engineering A 518 (2009) 27-34.
  • [26]M. Koori, M. Morishita, K. Yoshikawa, O. Tsuda, Nickel-based heat-resistant alloy for dies, European Patent Application EP0460678.
  • [27]H. Goldenstein, Y.N. Silva, H.N. Yoshimura, Design a new family of high temperature wear resistant alloys based on Ni3Al IC: experimental results and thermodynamic modeling, Intermetalics 12 (2004) 963-968.
  • [28]P. Bała, New tool materials based on Ni alloys strengthened by inter-metallic compounds, Materials Engineering (2010) (in press).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL7-0048-0011
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.