PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of strategic development perspectives of laser treatment of casting magnesium alloys

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The purpose of this paper is to assess the strategic perspectives of laser treatment of casting magnesium alloys such as MCMgAl12Zn1 MCMgAl9Zn1, MCMgAl6Zn1, MCMgAl3Zn1 using carbide TiC, WC, VC, SiC and Al2O3 oxide powders. The type of powder was taken as a criterion for the technology groups distinguishing in that way five groups of technologies for further research studies. Design/methodology/approach: In the framework of foresight-materials science researches: the dendrological matrix of technology value, the meteorological matrix of environment influence and the matrix of strategies for technology with the strategic development tracks were made, such researches as: X-ray microanalysis, qualitative X-ray analysis, hardness tests and roughness measurements were carried out under the scanning electron microscope and the light microscopy, as well as technology roadmaps were prepared. Findings: The outcarried researches pointed out very high potential and attractiveness of the given technologies in the background environment and the promising improvement of mechanical properties of examined materials. Research limitations/implications: Described materials science and foresight research concerning the cladding and remelting of carbides and oxides in the surface of casting magnesium alloys are a part of a wider research project aiming to define, examine and characterise innovative technology of surface engineering of engineering materials. Practical implications: The presented results of experimental materials science researches prove a significant positive effect of laser treatment with the use of carbides and oxides on the structure and properties of casting magnesium alloys that is why it is legitimate that they are included in the set of innovative technologies qualified for use in an industrial practice including small and medium enterprises. Originality/value: The value of this paper is to determine the value of laser treatment technology of casting magnesium alloys in the background environment with recommended procedure strategies, the strategic development tracks and technology roadmaps including the influence of this treatment on the quality, microstructure and properties of surface layers obtained by cladding and remelting casting magnesium alloys.
Rocznik
Strony
5--39
Opis fizyczny
Bibliogr. 109 poz.
Twórcy
autor
autor
Bibliografia
  • [1] L. Georghiou, J.C. Harper, M. Keenan, I. Miles, R. Popper (eds.), The Handbook of Technology Foresight. Concepts and Practice, Edward Elgar Publishing Ltd., UK, 2008.
  • [2] A. Geyer, F. Scapolo, M. Boden, T. Döry, K. Ducatel, The Future of Manufacturing in Europe 2015-2020, The Challenge for Sustainability; Materials; Final Report; Groupe CM International, 2003.
  • [3] C. Dreher, Manufacturing visions: A holistic view of the trends for European manufacturing, in: M. Montorio, M. Taisch, K.-D. Thoben (eds.), Advanced Manufacturing. An ICT and Systems Perspective, Taylor & Francis Group, London, 2007.
  • [4] L.A. Dobrzański, Engineering materials and material designing. The basics of materials science and metal science, WNT, Warsaw, 2006 (in Polish).
  • [5] L.A. Dobrzański, A. Dobrzańska-Danikiewicz (eds.), Report from the realization of 2nd task "Analysis of the existing situation in terms of the development of technologies and social-economic conditions" with regard to the FORSURF project entitled Foresight of surface properties formation leading technologies of engineering materials and bioma-terials, International OSCO World Press, Gliwice 2010 (in Polish).
  • [6] L.A. Dobrzański, Shaping the structure and properties of engineering and biomedical material surfaces, International OCSCO World Press, Gliwice, 2009 (in Polish).
  • [7] M.B. Bever, P.E. Duwez, Gradients in composite materials, Materials Science and Engineering 10 (1972) 1-8.
  • [8] A. Mortensen, S. Suresh, Functionally graded metals and metal-ceramic composites: Part I "Processing", International Materials Review 40/6 (1995) 239-265.
  • [9] A. Neubrand, J. Rödel, Gradient materials: an overview of a novel concept, Zeitschrift für Metallkunde 88/5 (1997) 358- 371.
  • [10] Y. Miyamoto, W.A. Kaysser, B.H. Rabin, A. Kawasaki, R.G. Ford, Functionally Graded Materials, Kluwer Acade-mic Publishers, Boston, 1999.
  • [11] A. Kawasaki, R. Watanabe, Concept and P/M fabrication of Functionally Gradient Materials, Ceramics International 23 (1997) 73-83.
  • [12] B. Kieback, A. Neubrand, H. Riedel, Processing techniques for functionally graded material, Materials Science and Engineering A362/1-2 (2003) 81-106.
  • [13] M. Willert-Porada, T. Gerdes, R. Borchert, Application of Microwave Processing to Preparation of Ceramic and Metal-Ceramic FGM, Proceedings of the 3rd International Symposium on Structural and Functional Gradient Mate-rials, FGM'94, Presses Polytechniques et Universitaires Romandes, Lausanne, 1994, 15-20.
  • [14] V. Richter, Fabrication and Properties of Gradient Hard Metals, Proceedings of the 3rd International Symposium on Structural and Functional Gradient Materials, FGM'94, Presses Polytechniques et Universitaires Romandes, Lausanne, 1994, 587-592.
  • [15] M. Yuki, T. Murayama, T. Irisawa, A. Kawasaki, R. Watanabe, Temperature Gradient Sintering of PSZ/Mo Functionally Gradient Material by Laser Beam Heating, Proceedings of the 1st International Symposium on Functionally Gradient Materials, FGM'90, Sendai, 1990, FGM Forum, Tokyo, 1990, 203-208.
  • [16] E.M. Ruiz-Navas, R. Garciýa, E. Gordo, F.J. Velasco, Development and characterization of high-speed steel matrix composites gradient materials, Journal of Materials Processing Technology 143-144 (2003) 769-775.
  • [17] B. Major (ed.), Designing and manufacturing functional gradient materials PBZ-KBN-100/T08/2003, Polish Academy of Sciences, Institute of Metallurgy and Material Engineering, Cracow, 2007 (in Polish).
  • [18] U. Schulz, M. Peters, F.W. Bach, G. Tegeder, Graded coatings for thermal, wear, and corrosion barriers, Material Science and Engineering 362 (2003) 61-80.
  • [19] I.Y. Konyashin, A technique for fabrication of coated TiCN-based cermets with functionally graded structure, International Journal of Refractory Metals & Hard Materials 19 (2001) 523-526.
  • [20] L.A. Dobrzański, L.W. Żukowska, J. Mikuła, K. Gołombek, D. Pakuła, M. Pancielejko, Structure and mechanical properties of gradient PVD coatings, Journal of Materials Processing Technology 201/1-3 (2008) 310-314.
  • [21] K. Lukaszkowicz, L.A. Dobrzański, Structure and mechanical properties of gradient coatings deposite by PVD technology onto the X40CrMoV5-1 steel substrate, Journal of Materials Science 43 (2008) 3400-3407.
  • [22] S. Chi, Y. Chung, Cracking in coating-substrate composites with multi-layered and FGM coatings, Engineering Fracture Mechanics 70 (2003) 1227-1243.
  • [23] T. Hejwowski, Wear resistance of graded coatings, Vacuum 65 (2002) 515-520.
  • [24] R. Manaila, A. Devenyi, D. Biro, L. David, P.B. Barna, A. Kovacs, Multilayer TiAlN coatings with composition gradient, Surface and Coatings Technology 151-152 (2002) 21-25.
  • [25] S. PalDey, S.C. Deevi, Properties of single layer and gradient (Ti,Al)N coatings, Materials Science and Engineering, A361 (2003) 1-8.
  • [26] B.A. Movchan, Functionally graded EB PVD coatings, Surface and Coatings Technology 149 (2002) 252-258.
  • [27] L.A. Dobrzański, Designing and manufacturing functional tool gradient materials. The dependence of properties on technologies and thickness of surface layers with a gradient of a chemical or phase composition created on tools for various applications, in: Designing and manufacturing functional gradient materials, B. Major (ed.), PBZ-KBN-100/T08/2003, Polish Academy of Sciences, Institute of Metallurgy and Material Engineering, Cracow, 2007 (in Polish).
  • [28] L.A. Dobrzański, K. Gołombek, Structure and properties of the cutting tools made from cemented carbides and cermets with the TiN+mono, gradient or multi (Ti,Al,Si)N+TiN nanocrystalline coatings, Journal of Materials Processing Technology 164-165 (2005) 805-815.
  • [29] A. Kloc, L.A. Dobrzański, G. Matula, J.M. Torralba, Effect of manufacturing methods on structure and properties of the gradient tool materials with the non-alloy steel matrix reinforced with the HS6-5-2 type high-speed steel, Materials Science Forum 539-543 (2007) 2749-2754.
  • [30] J.H. Abboud, Functionally gradient titanium-aluminide composites produced by laser cladding, Journal of Materials Science 29/13 (1994) 3393-3398.
  • [31] Y.T. Pei, T.C. Zuo, Gradient microstructure in laser clad TiC-reinforced Ni-alloy composite coating, Materials Science and Engineering A241 (1998) 259-263.
  • [32] P. Wu, C.Z. Zhou, X.N. Tang, Laser alloying of a gradient metal-ceramic laser to enhance wear properties, Surface and Coatings Technology 73 (1995) 111-114.
  • [33] Z. Tao, Microstructures and tribological behavior of Cr/WC laser modified gradient layer on cast Al-Si alloy, Journal of Shanghai Jiaotong University 36/5 (2002) 612-615.
  • [34] P. Yutao, Laser clad TiCp/Ni alloy functionally gradient coating and its in-situ formation mechanism, Acta Metallurgica Sinica 34/9 (1998) 987-991.
  • [35] W. Xiaolei, In situ formation by laser cladding of TiC composite coating with a gradient distribution, Surface and Coatings Technology 115/2 (1999) 111-115.
  • [36] J.T.M. De Hosson, V. Ocelik, Functionally Graded Materials Produced with High Power Lasers, Materials Science Forum 426-432 (2003) 123-130.
  • [37] L. Qibin, Z. Weidong, Z. Longjiang, et al., Microstructure and character of friction and wear of WCp/Ni based alloy gradient composite coating by wide-band laser cladding, Acta Materiae Compositae Sinica 19/6 (2002) 52-56 (in Chinese).
  • [38] Z. Tao, Microstructure of Ni/WC laser gradient coating on cast Al-Si alloy, Journal of Shanghai Jiaotong University, 36/1 (2002) 203-208.
  • [39] FORSURF: Foresight of surface properties formation leading technologies of engineering materials and biomaterials, POIG.01.01.01-00-023/08, Institute of Engineering Materials and Biomaterials, Silesian University of Techno-logy, Gliwice, project in realisation.
  • [40] A. Dobrzańska-Danikiewicz, E-foresight of materials surface engineering, Archives of Materials Science and Engineering 44/1 (2010) 43-50.
  • [41] A. Dobrzańska-Danikiewicz, Foresight methods for technology validation, roadmapping and development in the surface engineering, Archives of Materials Science and Engineering 44/2 (2010) 69-86.
  • [42] A. Dobrzańska-Danikiewicz, Computer Integrated Foresight Researches Methodology in Surface Engineering Area, work in progress.
  • [43] A. Dobrzańska-Danikiewicz, The methodological fundaments of development state analysis of surface engineering technologies, Journal of Achievements in Materials and Manufacturing Engineering 40/2 (2010) 203-210.
  • [44] A. Dobrzańska-Danikiewicz, Main assumption of the foresight of surface properties formation leading technologies of engineering materials and biomaterials, Journal of Achievements in Materials and Manufacturing Engineering 34/2 (2009) 165-171.
  • [45] A. Dobrzańska-Danikiewicz, Development state analysis of surface engineering technologies, in: 3rd Workshop on foresight of surface properties formation leading technologies of engineering materials and biomaterials, L.A. Dobrzański, A. Dobrzańska-Danikiewicz (eds.), International OCSCO World Press, Gliwice, 2010 (in Polish).
  • [46] A. Dobrzańka-Danikiewicz, Goals and methodology of the FORSURF project entitled Foresight of surface properties formation leading technologies of engineering materials and biomaterials, in: 2nd Workshop on foresight of surface properties formation leading technologies of engineering materials and biomaterials, L.A. Dobrzański (ed.), International OCSCO World Press, Gliwice, 2009 (in Polish).
  • [47] L.A. Dobrzański, A. Dobrzańska-Danikiewicz, M. Kraszewska, A. Jagiełło, IT methods in goals and tasks of the FORSURF project entitled Foresight of surface properties formation leading technologies of engineering materials and biomaterials, in: 2nd Workshop on foresight of surface properties formation leading technologies of engineering materials and biomaterials, L.A. Dobrzański (ed.), International OCSCO World Press, Gliwice 2009, (in Polish).
  • [48] A. Dobrzańska-Danikiewicz, Main assumptions of the foresight of surface engineering of engineering materials and biomaterials, in: 1st Workshop on foresight of surface properties formation leading technologies of engineering materials and biomaterials, L.A. Dobrzański (ed.), International OCSCO World Press, Gliwice, 2009.
  • [49] J. Kisielnicki, MIS. Management Information Systems, Placet, Warsaw, 2008 (in Polish).
  • [50] M. Hasan, E. Harris, Entrepreneurship and innovation in e-commerce, Journal of Achievements in Materials and Manufacturing Engineering 32/1 (2009) 92-97.
  • [51] J. Papińska-Kacperek (ed.), Information society, PWN, Warsaw, 2008 (in Polish).
  • [52] I. Yadroitsev, P. Bertrand, B. Laget, I. Smurov, Application of laser assisted technologies for fabrication of functionally graded coatings and objects for the International Thermo-nuclear Experimental Reactor components, Journal of Nuclear Materials 362/2-3 (2007) 189-196.
  • [53] F. Bachmann, Der Laser von morgen - Diodenlaser, Proceedings Conference Schweisstechnische Lehr- und Versuchsanstalt, Duisburg, Germany, 1997, 1-17.
  • [54] Y.P. Zhang, Z.R. Zhou, J.M. Cheng, Y.L. Ge, H. Ma, Laser remelting of NiCoCrAlY clad coating on superalloy, Surface and Coatings Technology 79 (1996) 131-134.
  • [55] Z. Changchi, Study of protection from cracks in laser cladding of metal-ceramic composite coating, The International Society for Optical Engineering 2888 (1996) 259- 264.
  • [56] T. Nailing, Laser cladding high temperature alloy and WC ceramic, The International Society for Optical Engineering, 3862 (1999) 47-55.
  • [57] F. Vollertsen, K. Partes, J. Meijer, State of the art of Laser Hardening and Cladding, Proceedings of the 3th International WLT - Conference on Lasers in Manufacturing, Munich, 2005, 783-792.
  • [58] F. Bachmann, Industrial applications of high power diode lasers in materials processing, Applied Surface Science 208- 209 (2003) 125-136.
  • [59] S. Barnes, N. Timms, B. Bryden, High power diode laser cladding, Journal Material Processing Technology 138 (2003) 411-416.
  • [60] A. Klimpel, Welding and metal cutting technology, Silesian University of Technology Publishing, Gliwice, 1998 (in Polish).
  • [61] A. Klimpel, Pad welding and hot spraying. Technologies, WNT, Warsaw, 2000 (in Polish).
  • [62] A. Klimpel, High-power diode lasers in welding, Welding review 71/8 (1999) 1-7 (in Polish).
  • [63] A. Woldan, J. Kusiński, S. Kuc, The influence of laser alloying of carbon steel with tantalum on the structure and properties of the surface layer", Material Engineering 5 (1999) 332-334 (in Polish).
  • [64] J. Mateos, J.M. Cuetos, E. Fernandez, R. Vijande, Tribological behaviour of plasma sprayed WC coatings with and without laser remelting, Wear 239 (2000) 274-281.
  • [65] B. Major, R. Ebner, Constitution of the surface layer of metal materials through laser processing, Surface Engineering 1 (1996) 53-65 (in Polish).
  • [66] J. Kusiński, Microstructure, chemical composition and properties of the surface layer of M2 steel after laser melting under different conditions, Applied Surface Science 86 (1995) 317-322.
  • [67] J. Kusiński, Wear properties of T15 PM HSS made indexable inserts after laser surface melting, Journal of Materials Processing Technology 64 (1997) 239-246.
  • [68] J. Dutta Majumdar, A.K. Nath, I. Manna, Studies on laser surface melting of tool steel. Part II: Mechanical properties of the surface, Surface and Coatings Technology 204/9-10 (2010) 1326-1329.
  • [69] A. Woldan, J. Kusiński, E. Tasak, S. Kuc, The influence of laser alloying of carbon steel with chromium on the structure and properties of the surface layer, Material Engineering 6 (2000) 478-481 (in Polish).
  • [70] T.R. Jervis, M. Nastasi, A.J. Griffin, T.G. Zocco, T.N. Taylor, S.R. Foltyn, Tribological effects of excimer laser processing of tool steel, Surface and Coatings Technology 89 (1997) 158-164.
  • [71] F. Bachmann, Applications of high power diode lasers, ICALEO EUROPE 98. Laser Applications Overview (1998) 1-5.
  • [72] M. Adamiak, L.A. Dobrzański, Microstructure and selected properties of hot-work tool steel with PVD coatings after laser surface treatment, Applied Surface Science 254/15 (2008) 4552-4556.
  • [73] M. Bonek, L.A. Dobrzański, E. Hajduczek, A. Klimpel, Structure and properties of laser alloyed surface layers on the hot-work tool steel, Journal of Materials Processing Technology 175/1-3 (2006) 45-54.
  • [74] A. Klimpel, L.A. Dobrzański, A. Lisiecki, D. Janicki, The study of the technology of laser and plasma surfacing of engine valves face made of X40CrSiMo10-2 steel using cobalt-based powders, Journal of Materials Processing Technology 175/1-3 (2006) 251-256.
  • [75] L.A. Dobrzański, K. Labisz, M. Piec, J. Lelątko, A. Klimpel, Structure and Properties of the 32CrMoV12-28 Steel Alloyed with WC Powder using HPDL Laser, Materials Science Forum 530-531 (2006) 334-339.
  • [76] L.A. Dobrzański, K. Labisz, A. Klimpel, Comparison of Mechanical Properties of the 32CrMoV12-28 Hot Work Tool Steels Alloyed with WC, VC and TaC Powder Using HPDL Laser, Key Engineering Materials 324-325 (2006) 1233-1236.
  • [77] L.A. Dobrzański, M. Piec, A. Klimpel, Z. Trojanowa, Surface modification of hot work tool steel by high-power diode laser, International Journal of Machine Tools and Manufacture 47/5 (2007) 773-778.
  • [78] L.A. Dobrzański, K. Labisz, E. Jonda, A. Klimpel, Comparison of the surface alloying of the 32CrMoV12-28 tool steel using TiC and WC powder, Journal of Materials Processing Technology 191/1-3 (2007) 321-325.
  • [79] M. Sokovic, L.A. Dobrzański, J. Kopał, L. Kosec, Cutting Properties of PVD and CVD Coated Al2O3 + TiC Tool Ceramic, Materials Science Forum 539-543 (2007) 1159-1164.
  • [80] L.A. Dobrzański, M. Bonek, M. Piec, E. Jonda, Diode Laser Modification of Surface Gradient Layer Properties of a Hot-work Tool Steel, Materials Science Forum 532-533 (2006) 657-660.
  • [81] L.A. Dobrzański, K. Labisz, E. Jonda, A. Klimpel, Comparison of the surface alloying of the 32CrMoV12-28 tool steel using TiC and WC powder, Journal of Materials Processing Technology 191/1-3 (2007) 321-325.
  • [82] L.A. Dobrzański, M. Piec, Z. Trojanowa, J. Lelątko, A. Klimpel: Structure and Properties of Gradient Layers Using High Power Diode Laser, Materials Science Forum 530-531 (2006) 269-274.
  • [83] Z. Brytan, M. Bonek, L.A. Dobrzański, D. Ugues, M. Actis Grande, The Laser Surface Remelting of Austenitic Stainless Steel, Materials Science Forum 654-656 (2010) 2511-2514.
  • [84] G. Matula, M. Bonek, L.A. Dobrzański, Comparison of Structure and Properties of Hard Coatings on Commercial Tool Materials Manufactured with the Pressureless Forming Method or Laser Treatment, Materials Science Forum 638-642 (2010) 1830-1835.
  • [85] L.A. Dobrzański, M. Polok-Rubiniec, M. Adamiak, PVD coatings deposited onto plasma nitrided X37CrMoV5-1 type steel, International Journal of Materials and Product Technology 33/3 (2008) 226-239.
  • [86] L.A. Dobrzański, A. Drygała, K. Gołombek, P. Panek, E. Bielańska, P. Zięba, Laser surface treatment of multi-crystalline silicon for enhancing optical properties, Journal of Materials Processing Technology 201/1-3 (2008) 291-296.
  • [87] Z. Brytan, M. Bonek, L.A. Dobrzański: Microstructure and properties of laser surface alloyed PM austenitic stainless steel, Journal of Achievements in Materials and Manufacturing Engineering 40/1 (2010) 70-78.
  • [88] L.A. Dobrzański, A. Kloc-Ptaszna: Structure and properties of the gradient tool materials based on a high-speed steel HS6-5-2 reinforced with WC or VC carbides, Journal of Achievements in Materials and Manufacturing Engineering 37/2 (2009) 213-237.
  • [89] L.A. Dobrzański, S. Skrzypek, D. Pakuła, J. Mikuła, A. Kniž, Influence of the PVD and CVD technologies on the residual macro-stresses and functional properties of the coated tool ceramics, Journal of Achievements in Materials and Manufacturing Engineering 35/2 (2009)162-168.
  • [90] D. Dube, M. Fiset, A. Couture, I. Nakatsugawa, Characterization and performance of laser melted AZ91D and AM60B, Materials Science and Engineering A299 (2001) 38-45.
  • [91] J. Dutta Majumdar, R. Galun, B.L. Mordike, I. Manna, Effect of laser surface melting on corrosion and wear resistance of a commercial magnesium alloy, Materials Science and Engineering A361 (2003) 119-129.
  • [92] L.A. Dobrzański, J. Domagała, T. Tański, A. Klimpel, D. Janicki, Laser surface treatment of magnesium alloy with WC and TiC powders using HPDL, Journal of Achievements in Materials and Manufacturing Engineering 28/2 (2008) 179-186.
  • [93]L.A. Dobrzański, J. Domagała, T. Tański, A. Klimpel, D. Janicki, Laser surface treatment of magnesium alloy with WC powder, Journal of Archives of Materials Science and Engineering 30/2 (2008) 113-116.
  • [94] L.A. Dobrzański, T. Tański, J. Domagała, S. Malara, M. Król, Effect of high power diode laser surface melting and cooling rate on microstructure and properties of magnesium alloys, Journal of Achievements in Materials and Manufacturing Engineering 37/2 (2009) 238-257.
  • [95] L.A. Dobrzański, S. Malara, T. Tański, J. Konieczny, Effect of high power diode laser surface alloying on structure MCMgAl12Zn1alloy, Archives of Materials Science and Engineering 43/1 (2010) 54-61.
  • [96] L.A. Dobrzański, T. Tański, J. Trzaska, Modeling of the optimum heat treatment conditions of Mg-Al-Zn magnesium cast alloys, International Journal Computational Materials Science and Surface Engineering 1/5 (2007) 540-554.
  • [97] L.A. Dobrzański, T. Tański, L. Cížek, Z. Brytan, Structure and properties of the magnesium casting alloys, Journal of Materials Processing Technology 192-193 (2007) 567-574.
  • [98] T. Tański, L.A. Dobrzański, L. Cížek, Influence of heat treatment on structure and properties of the cast magnesium alloys, Journal of Advanced Materials Research 15-17 (2007) 491-496.
  • [99] L.A. Dobrzański, T. Tański, Influence of aluminium content on behaviour of magnesium cast alloys in bentonite sand mould, Solid State Phenomena 147-149 (2009) 764-769.
  • [100] L.A. Dobrzański, T. Tański, J. Trzaska, Optimization of heat treatment conditions of magnesium cast alloys, Materials Science Forum 638-642 (2010) 1488-1493.
  • [101] A. Fajkiel, P. Dudek, G. Sęk-Sas, Foundry engineering XXI c. Directions of metallurgy development and light alloys casting, Publishers Institute of Foundry Engineering, Cracow, 2002.
  • [102] M.K. Kulekci, Magnesium and its alloys applications in automotive industry, International Journal Advanced Manufacturing Technology 39/9-10 (2008) 851-865.
  • [103] E.F. Horst, B.L. Mordike, Magnesium Technology. Metallurgy, Design Data, Application, Springer-Verlag, Berlin Heidelberg 2006. 7983 Treatment 48 (2006) 479-486.
  • [104] Z. Yang, J.P. Li, J. X. Zhang, G. W. Lorimer, J. Robson, Review on research and development of magnesium alloys, Acta Metallurgica Sinica, 21/5 (2008) 313-328.
  • [105] R. Alderliesten, C. Rans, R. Benedictus, The applicability of magnesium based Fibre Metal Laminates in aerospace structures, Composites Science and Technology 68 (2008) 2983-2993.
  • [106] H. Altun, S. Sen, The effect of PVD coatings on the wear behaviour of magnesium alloys, Materials Characterization 58 (2007) 917-921.
  • [107] The Boston Consulting Group, The Product Portfolio, Perspectives 66 (1970).
  • [108] X. Cao, M. Jahazia, J. Fournierb, M. Alainb, Optimization of bead spacing during laser cladding of ZE41A-T5 magnesium alloy castings, Journal of Materials Processing Technology 205 (2008) 322-331.
  • [109] B. Bronfin, N. Moscovitch, New magnesium alloys for transmission parts, Metal Science and Heat Treatment 48 (2006) 479-486.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL7-0048-0001
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.