PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fatigue life of creep resisting steels under conditions of cyclic mechanical and thermal interactions

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: This study sets out to determine the characteristics of high-temperature creep resisting steels under conditions of thermo-mechanical fatigue with the use of a method proposed in the Code-of-Practice under the EU TMF-Standard project. Design/methodology/approach: The thermo-mechanical fatigue (TMF) tests were carried out in the conditions where the value of complete strain and the temperature were under control. Two methods of investigating samples in TMF tests were applied: OP (out-of-phase) and IP (in-phase). Findings: Based on the tests, the characteristics of TMF life was determined and it was found that X20CrMoV12.1 steel shows lower life in comparison with new steels: X10CrMoVNb9-1 (T/P91) and X10CrWMoVNb9-2 (T/P92). The results of the OP tests made for X10CrMoVNb9-1 (T/P91) steel are an exception here. Tests of thermo-mechanical fatigue have shown that in a majority of cases in fatigue tests, the X20CrM0V12.1 steel has lower TMF life when compared to X10CrMoVNb9-1 (T/P91) and X10CrWMoVNb9-2 (T/P92) steels, despite its better strength properties, as a measure of which, the range of stress was adopted. Research limitations/implications: At the present stage of the research, two types of tests (IP and PO) were performed. Due to a limited number of experiments connected with the application of selected types of tests and their number, the conclusions resulting from the research may, at the present stage, serve as guidelines for its continuation only. Practical implications: The test results may also be used to compare the properties of creep resisting steels used in the power engineering industry and represent a contribution to widening the knowledge of the behaviour of materials under thermo-mechanical fatigue conditions. Originality/value: This study is one of the first attempts to determine the TMF life characteristics of the steels used in the Polish power engineering industry.
Rocznik
Strony
37--40
Opis fizyczny
Bibliogr. 15 poz.
Twórcy
autor
autor
autor
  • Department of Technology of Materials, Silesian University of Technology, ul. Krasińskiego 8, 41-403 Katowice, Poland, anzelina.marek@polsl.pl
Bibliografia
  • [1] J. Dobrzański, A. Zieliński, M. Sroka, Microstructure, properties investigations and methodology of the state evaluation of T23 (2.25Cr-0-0.3-1.6W-V-Nb) steel in boilers application, Journal of Achievements in Materials and Manufacturing Engineering 32/2 (2009) 142-153.
  • [2] L. Kloc, V. Skienińska, J. Ventruba, Comparison of low stress creep properties of ferritic and austenitic creep resistant steels, Materials Science and Engineering A 319 – 321 (2001) 774-778.
  • [3] A. Zieliński, J. Dobrzański, G. Golański, Estimation of the residua life of L17 HMF cast steel elements after long-term service, Journal of Achievements in Materials and Manufacturing Engineering 34/2 (2009) 137-144.
  • [4] A. Hernas, J. Dobrzański, A. Kiełbus, Degradation of micro-structure and properties of X20CrMoV12.1 steel after long-term service, Praktische Matallographie 32 (2001) 237-240.
  • [5] A. Hernas, K. Rodak, A. Kiełbas, Substructure of martensitic X20CrMoV12.1 steel after 100 thousand hours of service, Acta Metallurgica Slovaca 1/2001 (2001) 512-514.
  • [6] Standard Test Method for Strain Controlled Thermomechanical Fatigue Testing, TMF Working Document, 6/00.
  • [7] P.Hähner et al., Code-of-Practice for Thermo-Mechanical Fatigue Testing, Project funded by the EC under FP5 Growth Programme, GRD2-2000-30014, International Journal of Fatigue (in print).
  • [8] S. Hui-Ji, W. Zhong-Guang, S. Hui-He, Thermomechanical fatigue of a 316L austenitic steel at two different temperature intervals, Scripta Materialia 35/9 (1996) 1107-1113.
  • [9] L. Lindé, B. Ivarsson, P. Henderson, J. Lindblom, Thermo-mechanical, low cycle and thermal fatigue behaviour of a 1Cr0.5Mo steel, Swedish Institute for Metals Research, report IM-2840, 1992.
  • [10] J.R. Liu, S.X. Li, D. Li, R. Yang, Isothermal and thermomechanical fatigue behaviour of a high temperature titanium alloy, Materials Science and Technology 20 (2004) 1266-1272.
  • [11] L. Lindé, P. Hendreson, Thermo-mechanical and low cycle fatigue of the oxide dispersion strengthened alloy MA 754. Swedish Institute for Metals Research, report IM – 3114, 1994.
  • [12] J. Okrajni, G. Junak, A. Marek, Modelling of deformation process under thermo-mechanical fatigue conditions, International Journal of Fatigue 30/2 (2008) 324-329.
  • [13] J. Okrajni, G. Junak, Low cycle fatigue of steels at high temperature under gradual loading, Journal of Achievements in Materials and Manufacturing Engineering 26/2 (2008) 147-150.
  • [14] J. Okrajni, A. Marek, G. Junak, Stress – strain characteristics under mechanical and thermal loading, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 271-274.
  • [15] J. Okrajni, A. Marek, G. Junak, Description of the deformation process under thermo-mechanical fatigue, Journal of Achievements in Materials and Manufacturing Engineering 21/2 (2007) 15-23.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL7-0038-0019
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.