PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Grain refinement in AZ31 alloy processed by equal channel angular pressing

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: of this paper was to investigate the effect of grain refinement in AZ31 magnesium alloy processed by ECAP and to study microstructure evolution and hardness response of AZ31 alloy associated with ECAP processing. Design/methodology/approach: The microstructure of AZ31 magnesium alloy after two passes of equal channel angular pressing at 150&degC, 180&degC and 250&degC was studied by means of metallographic and transmission electron microscopy. The hardness changes after ECAP processing were determined by Vickers hardness. Findings: The grain refinement in AZ31 magnesium alloy was successfully carried out using ECAP processing at 150, 180 and 250 &degC. The grain size decreases nearly 10 times after 2 passes of ECAP at 150 and 180&degC, but microstructure is characterized by bimodal grains structure. The rather homogenous grains were achieved after ECAP processing at 250&degC. Processes of dynamic recrystallization during ECAP were observed. The hardness increase related to grain refinement proceeded by ECAP is in accordance with Hall-Petch relationship. Research limitations/implications: The ECAP processing were carried out only after 2 passes, therefore in order to describe in detail the microstructural changes connected with grain refinement, the analysis of more passes of ECAP processing should be done. Practical implications: The development of highly ductile magnesium alloys allows to apply these materials as structural materials. The grain refinement of materials leads to the significant improvement of the mechanical properties and plasticity. The present results extend the knowledge about grain refinement in AZ31 alloy proceeded by ECAP. Originality/value: The microstructural studies of AZ31 alloy after grain refining by ECAP processing performed by transmission electron microscopy were presented.
Słowa kluczowe
EN
AZ31   grain   pressing  
PL
Rocznik
Strony
17--22
Opis fizyczny
Bibliogr. 18 poz.
Twórcy
autor
  • Institute of Technology, Pedagogical University of Cracow, ul. Podchorążych 2, 30-084 Kraków, Poland, kbryla@ap.krakow.pl
Bibliografia
  • [1] B.L. Mordike, T. Ebert, Magnesium. Properties-applications-potential, Materials Science and Engineering A302 (2001) 37-45.
  • [2] H. Friedrich, S. Schumann, Research for “a new age of magnesium in the automotive industry”, Journal of Materials Processing Technology 117 (2001) 276-281.
  • [3] K. Bryła, J. Dutkiewicz, M. Faryna, T.V. Dobatkina, L.L. Rokhlin, The influence of Nd and Ho addition on the microstructure of Mg-7Al alloy, Archives of Materials Science and Engineering 29/1 (2008) 40-44.
  • [4] V.M. Segal, Materials processing by simple shear, Materials Science and Engineering A197 (1995) 157-164.
  • [5] R.Z. Valiev, T.G. Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement, Progress in Materials Science 51 (2006) 881-981.
  • [6] R.K. Islamgaliev, N.F. Yunusova, R.Z. Valiev, N.K. Tsenev, V.N. Perevezentsev, T.G. Langdon, Characteristics of superplasticity in an ultrafine-grained aluminum alloy processed by ECA pressing, Scripta Materialia 49 (2003) 467-472.
  • [7] J.Kuśnierz, J. Bogucka, Effect of ECAP processing on the properties of cold rolled copper, Archives of Metallurgy 48 (2003) 173-182.
  • [8] S.Rusz, K. Malanik, Using severe plastic deformation to prepare of ultra fine - grained materials by ECAP method, Archives of Materials Science and Engineering 28/8 (2007) 683-686.
  • [9] M.Greger, R. Kocich, L. Cízek, L.A. Dobrzański, M. Widomská, Influence of ECAP technology on the metal structures and properties, Archives of Materials Science and Engineering 28/9 (2007) 709-716.
  • [10] R.B. Figueiredo, T.G. Langdon, Achieving Microstructural Refinement in Magnesium Alloys through Severe Plastic Deformation, Materials Transactions 50/1 (2009) 111-116.
  • [11] H.K. Lin, J.C. Huang, T.G. Langdon, Relationship between Texture and Low Temperature Superplasticity in AZ31 Mg Alloy, Materials Science and Engineering A402 (2005) 250-257.
  • [12] L. Jin, D. Lin, D. Mao, X. Zeng, B. Chen,W. Ding, Micro-structure evolution of AZ31 Mg alloy during equal channel angular extrusion, Materials Science and Engineering A 423 (2006) 247-252.
  • [13] F. Kang, J.T. Wang, Y. Peng, Deformation and fracture during equal channel angular pressing of AZ31 magnesium alloy, Materials Science and Engineering A487 (2008) 68-73.
  • [14] R.B. Figueiredo, T.G. Langdon, Principles of grain refinement and superplastic flow in magnesium alloys processed by ECAP. Materials Science and Engineering A501 (2009) 105-114.
  • [15] K. Xia, J.T. Wang, X. Wu, G. Chen, M. Gurrvan, Equal channel angular pressing of magnesium alloy AZ31, Materials Science and Engineering A410-411 (2005) 324-327.
  • [16] H.K. Kim, W.J. Kim, Microstructural instability and strength of an AZ31 Mg alloy after serve plastic deformation, Materials Science and Engineering A385 (2004) 300-308.
  • [17] M. Furukawa, Z. Horita, M. Nemoto, R.Z. Valiev, T.G. Langdon, Microhardness measurements and the Hall-Petch relationship in an Al-Mg alloy with submicrometer grain size, Acta Materialia 44 (1996) 4619-4629.
  • [18] A. Yamashita, Z. Horita, T.G. Longdon, Improving the mechanical properties of magnesium and a magnesium alloy through serve plastic deformation, Materials Science and Engineering A300 (2001) 142-147
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL7-0038-0015
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.