PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Creep damage mechanisms in gas pipes made of high density polyethylene

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The purpose of this article is to present results of creep damage mechanisms in gas pipes made of high density polyethylene [HDPE]. High density polyethylene has been widely used in the piping industry as raw material. Even though there are large numbers of experimental and analytical investigations on HDPE, few of them have examined the effects of manufacturing techniques on the small and finite deformation behaviors of HDPE. Since HDPE is semi-crystalline polymeric material the rate of crystallinity, molecular morphologies and molecular structure extensively influence its mechanical behaviors. Design/methodology/approach: Tensile creep experiments on HDPE with a duration of examinations from four till nine days were performed at temperature of 20°C. Findings: In this study, findings are indicating differences of the property in individual layers walls of the pipe. Research limitations/implications: Applying this method is limited to thermoplastic materials. Practical implications: Presented method can be applied for other thermoplastic materials in the future. Originality/value: The expressed method can be applied in the future for developing the research on the process with creeping of polymers.
Rocznik
Strony
89--95
Opis fizyczny
Bibliogr. 34 poz.
Twórcy
autor
autor
  • Division of Metal and Polymer Materials Processing, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland, katarzyna.michalik@polsl.pl
Bibliografia
  • [1] L.A. Dobrzański, Engineering materials and material design. Principles of materials science and physical metallurgy, WNT, Warsaw, 2006(in Polish).
  • [2] H.B.H. Hamouda, M. Simoes-betbeder, F. Grillon, P. Blouet, N. Billon, R. Piques, Creep damage mechanisms in polyethylene gas pipes, Polymer 42 (2001) 5425-5437.
  • [3] D. Monas, M. Monas, M. Starek, M. Danek, Improvement of plastic properties, Archives of Materials Science and Engineering 32/2 (2008) 69-76.
  • [4] A. Pusz, K. Michalik, Examining the hardness of high density polyethylene with method of the cone, Archives of Materials Science and Engineering 28/8 (2007) 467-470.
  • [5] K. Michalik, A. Pusz, Optimization of the lacquering process, Archives of Materials Science and Engineering 32/2 (2008) 113-116.
  • [6] A. Gnatowski, P. Palutkiewicz, E. Bociąga, Numerical analysis of stress state during single point bending in DMTA examinations, Journal of Achievements in Materials and Manufacturing Engineering 28/1 (2008) 47-50.
  • [7] M. Parsons, E.V. Stepanov, A. Hiltner, E. Baer, Correlation of fatigue and creep slow crack growth in a medium density polyethylene pipe material, Journal of Materials Science 35 (2000) 2659-2674.
  • [8] V. Favier, T. Giroud, E. Strijko, J.M. Hiver, C. G’Sell, S. Hellinckx, A. Goldberg, Slow crack propagation in polyethylene under fatigue at controlled stress intensity, Polymer 43 (2002) 1375-1382.
  • [9] J. Cazenave, R. Seguela, B. Sixou, Y. Germain, Short - term mechanical and structural approaches for evaluation of polyethylene stress crack resistance, Polymer 47 (2006) 3904-3914.
  • [10] G. Pinter, M. Haager, W. Balika, R.W. Lang, Fatigue crack growth in PE-HD pipe materials, Plastics and Rubber Composites Processing Applications 34 (2005) 25-33.
  • [11] M. Żenkiewicz, J. Richert, Influence of polymer samples preparation procedure on their mechanical properties, Journal of Achievements in Materials and Manufacturing Engineering 26/2 (2008) 155-158.
  • [12] D. Barry, O. Delatycki, The effect of molecular structure and polymer morphology on the fracture resistance of high density polyethylene, Polymer 33 (1992) 1264-1265.
  • [13] S. Castagnet, J.C. Grandidier, Structural effect in the creep behavior of thermoplastic pressure pipes at high temperature - role of geometrical defects, Archive of Applied Mechanics 76 (2006) 567-578.
  • [14] R. Schouwenaars, V.H. Jacob, E. Ramos, A. Oritz, Slow crack growth and failure induced manufacturing defects in HDPE - tubes, Engineering Failure Analysis 14 (2007) 1124-1134.
  • [15] J. Tusek, Analysis of a joint of steel and high-density polyethylene, Journal of Achievements in Materials and Manufacturing Engineering 19/2 (2006) 7-15.
  • [16] M. Szymiczek, G. Wróbel, Influence of temperature on the viscoelastic properties of drawn PE pipes, Journal of Achievements in Materials and Manufacturing Engineering 19 (2007) 287-290.
  • [17] O. Balkan, H. Demirer, H. Yildirim, Morphological and mechanical properties of hot gas welded PE, PP and PVC sheets, Journal of Achievements in Materials and Manufacturing Engineering 31/1 (2008) 60-70.
  • [18] C.J.G. Plummer, A. Goldberg, A. Ghanem, Micromechanisms of slow crack growth n polyethylene under constant tensile loading, Polymer 42 (2001) 9551-9564.
  • [19] P.A. O’Connell, M.J. Bonner, R.A. Duckett, I.M. Ward, The relationship between slow crack propagation and tensile creep bahaviour in polyethylene, Polymer 36 (1995) 2355-2362.
  • [20] J. Koszkul, J. Nabiałek, Selected methods of modelling of polymer during the injection moulding process, Journal of Achievements in Materials and Manufacturing Engineering 24/1 (2007) 253-259.
  • [21] D. Kwiatkowski, J. Nabiałek, P. Postawa, Influence of injection moulding parameters on resistance for cracking on example of PP, Journal of Achievements in Materials and Manufacturing Engineering 17 (2006) 97-100.
  • [22] E. Krempl, F. Khan, Rate (time) dependent deformation behaviour an overview of some properties of metals and soild polymers, International Journal of Plasticity 19 (2003) 1069-1095.
  • [23] O.U. Colak, N. Dusunceli, Modeling viscoelastic and viscoplastic behavior of high density polyethylene (HDPE), Journal of Engineering Materials and Technology 128 (2006) 572-578.
  • [24] X. Lu, Z. Zhou, N. Brown, The anisotropy of slow crack growth in polyethylene pipes, Polymer Engineering and Science 34 (1994) 109-115.
  • [25] G. Wróbel, M. Szymiczek, Evaluation of effects of geometric parameters of reducing die on after-deformation return of polyethylene pipes, Proceedings of the 12th Scientific International Conference “Achievements in Mechanical and Materials Engineering” AMME’2003, Gliwice - Zakopane, 2003, 1049-1052 (in Polish).
  • [26] J.G.J. Beijer, J.L. Spoormaker, Modeling of creep behavior in injection - moulded HDPE, Polymer 41 (2000) 5443-5449.
  • [27] S. Hillmanses, S. Hobeika, R.N. Haward, S. Aleevers, The effect of strain rate, temperature and molecular mass on the tensile deformation of polyethylene, Polymer Engineering Science 40 (2000) 481-489.
  • [28] M. Bonner, R.A. Duckett, I.M. Ward, The creep beahaviour of isotropic polyethylene, Journal of Materials Science 34 (1999) 1885-1897.
  • [29] A. Shah, E.V. Stepanov, M. Klein, A. Hiltner, E. Baer, Study of polyethylene pipe resins by fatigue test that simulates crack propagation in real pipe, Journal of Materials Science 33 (1998) 3313-3319.
  • [30] PN-EN ISO 6259-1:2003 Thermoplastics pipes - Determination of tensile properties - Part 1: General test Method.
  • [31] PN-EN ISO 527-1:1998 Plastics - Determination of tensile properties – Part 1: General principles.
  • [32] PN-EN ISO 527-2:1998 Plastics - Determination of tensile properties - Part 2: Test conditions for moulding and extrusion plastics.
  • [33] PN-EN ISO 899-1:2005 Plastics - Determination of creep behaviour - Part 1: Tensile creep
  • [34] PN-EN ISO 9967:2007 Thermoplastics pipes - Determination of creep ratio.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL7-0034-0012
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.