PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental investigation of viscosity and thermal conductivity of suspensions containing nanosized ceramic particles

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: In this study we report measurements of effective thermal conductivity by using 3ω method and effective viscosity by vibro-viscometer for SiO2-water and Al2O3-water nanofluids at different particle concentrations and temperatures. Design/methodology/approach : The effective thermal conductivity of nanofluids is measured by a technique based on a hot wire thermal probe with ac excitation and 3ω lock-in detection. There is presented an experimental study of thermal conductivity and viscosity of nanofluids. It was investigated Alumina and Silica nanoparticles in water with different particle concentrations. Findings: Measured results showed that the effective thermal conductivity of nanofluids increase as the concentration of the particles increase but not anomalously as indicated in the majority of the literature and this enhancement is very close to Hamilton-Crosser model, also this increase is independent of the temperature. The effective viscosities of these nanofluids increased by the increasing particle concentration and decrease by the increase in temperature, and can not be predicted by Einstein model. Practical implications: The results show that for our samples, thermal conductivity values are inside the limits of (moderately lower than) Hamilton-Crosser model. Originality/value: Experiments at different temperatures show that relative thermal conductivity of nanofluids is not related with the temperature of the fluid.
Rocznik
Strony
99--103
Opis fizyczny
bibliogr. 19 poz.
Twórcy
autor
autor
autor
autor
Bibliografia
  • [1] D.G. Cahil, Thermal conductivity measurement from 30 to 750 K: the 3 omega method, Review Scientific Instruments 61 (1990) 802-808.
  • [2] M. Chirtoc, J.F. Henry, 3ω hot wire method for micro-heat transfer measurements: From anemometry to scanning thermal microscopy (SThM), European Physical Journal-Special Topics 153 (2008) 343-348.
  • [3] M. Chirtoc, X. Filip, J.F. Henry, J.S. Antoniow, I. Chirtoc, D. Dietzel, R. Meckenstock, J. Pelzl, Thermal probe selfcalibration in ac scanning thermal microscopy, Superlattices and Microstructures 35 (2004) 305-314.
  • [4] M. Chirtoc, J.F. Henry, A. Turgut, C. Sauter, S. Tavman, I. Tavman, J. Pelzl, Modulated hot wire method for thermophysical characterization of nanofluids, Proceedings of the 5th European Thermal-Sciences Conference, Eindhoven, 2008 (CD-ROM).
  • [5] S. U. S. Choi, Enhancing Thermal Conductivity of Fluids with Nanoparticles, Developments and Applications of Non-Newtonian Flows, American Society of Mechanical Engineers FED 231 (1995) 99-105.
  • [6] S.U.S. Choi, Z. G. Zhang, W. Yu, F.E. Lockwood, E. A. Grulke, Anomalous Thermal Conductivity Enhancement in Nano-Tube Suspensions, Applied Physics Letters 79 (2001) 2252-2254.
  • [7] S.K. Das, N. Putra, P. Thiesen, W. Roetzel, Temperature dependence of thermal conductivity enhancement for nanofluids, Journal of Heat Transfer 125 (2003) 567-574.
  • [8] A. Einstein, Investigations on the theory of the brownian movement, Dover Publications, New York, 1956.
  • [9] R.L. Hamilton, O. K. Crosser, Thermal Conductivity of Heterogeneous Two Component Systems, Industrial and Engineering Chemistry Fundamentals 1/3 (1962) 187-191.
  • [10] K.D. Hemanth, H.E. Patel, K.V.R. Rajeev, T. Sundararajan, T. Pradeep, S.K. Das, Model for heat conduction in nanofluids, Physics Revie Letters 93 (2004) 144301-1–144301-4.
  • [11] Y.J. Hwang, Y.C. Ahn, H.S. Shin, C.G. Lee, G.T. Kim, H.S. Park, J.K. Lee, Investigation on characteristics of thermal conductivity enhancement of nanofluids, Current Applied Physics 6 (2006) 1068-1071.
  • [12] S.P. Jang, S.U.S. Choi, Role of Brownian Motion in the Enhanced Thermal Conductivity of Nanofluids, Applied Physics Letters 84/21 (2004) 4316-4318.
  • [13] H.U. Kang, S.H. Kim, J.M. Oh, Estimation of Thermal Conductivity of Nanofluid Using Experimental Effective Particle Volume, Experimental Heat Transfer 19 (2006) 181-191.
  • [14] D.R. Lide, Handbook of Chemistry and Physics, 84th Edition, CRC Press, Bocca Raton, 2003.
  • [15] J.C. Maxwell, A Treatise on Electricity and Magnetism, Clarendon Press, Oxford, United Kingdom, 1881
  • [16] S.M.S. Murshed, K.C. Leong, C. Yang, Thermophysical and electrokinetic properties of nanofluids- a critical review, Applied Thermal Science 47 (2008a) 01.005-10.1016.
  • [17] S.M.S. Murshed, K.C. Leong, C. Yang, Investigations of thermal conductivity and viscosity of nanofluids, International Journal of Thermal Sciences 47/5 (2008b) 560-568.
  • [18] A. Turgut, C. Sauter, M. Chirtoc, J.F. Henry, S. Tavman, I. Tavman, J. Pelzl, AC hot wire measurement of thermophysical properties of nanofluids with 3 omega method, European Physical Journal-Special Topics 153 (2008) 349-352.
  • [19] W.H. Yu, D.M. France, J.L. Routbort, S.U.S. Choi, Review and comparison of nanofluid thermal conductivity and heat transfer enhancements, Heat Transfer Engineering 29/5 (2008) 432-460.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL7-0033-0040
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.