PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Liquid eutectic alloys as a cluster solutions

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: In this research work the results of structure studies for Al0.88Si0.12, Bi0.995Cu0.005, Al0.83Cu0.17 eutectic and Co0.05Cu0.95 peritectic melts have been presented. The structure parameters of molten alloys are compared with ones for liquid pure components and with model values. Design/methodology/approach: The structure in liquid state has been studied with use of X-ray diffractometer containing special attachment for investigation of liquid metallic alloys. The system was equipped with special camera for sample, filled with pure helium in order to avoid the oxidation. Experimental data were interpreted with using of random atomic distribution model and self-associated one. Findings: The research has shown that structure of liquid alloys Al0.88Si0.12, Bi0.995Cu0.005, Al0.83Cu0.17 and Co0.05Cu0.95 shows the deviation from random atomic distribution model and these alloys in liquid state at temperatures not far from melting point can be considered as cluster solutions. Practical implications: Existence of clusters in eutectic and peritectic melts influence the structure and properties of corresponding solid alloys, that is important for casting, soldering, welding and at producing of composite materials on the base of eutectic matrix. Originality/value: Cluster structure of eutectic melts is responsible for behaviour of structure and physical-chemical properties. The change of this structure allows to improve the properties of solidificated alloys, both crystalline and amorphous.
Rocznik
Strony
14--18
Opis fizyczny
Bibliogr. 18 poz.
Twórcy
autor
autor
  • Physics of Metals Department, Ivan Franko Lviv National University, Kyrylo and Mephodii str. 8, 79005 Lviv, Ukraine, mudry@physics.wups.lviv.ua
Bibliografia
  • [1] A.K. Shurin, N.A. Razumova, Thermograph study of the contact melting of metals, I. Simple systems, Powder Metallurgy and Metal Ceramics 33 (1995) 304-306.
  • [2] M. Lacroix, Contact melting of a phase change material inside a heated parallelepedic capsule, Energy Conversion and Management 42 (2001) 35-47.
  • [3] O. Enaldieva, T. Orkvasov, M. Ponezhev, V. Sozaev, Contact melting of lead-based solid solutions and metals, Technical Physics Letters 31/9 (2005) 765-766.
  • [4] P Korotkov, T. Orkvasov, V. Sozaev, The size effect in contact melting of metals, Technical Physics Letters 32 (2006) 61-63.
  • [5] H. Ishii, M. Naka, T. Masumoto, Preparation of amorphous metallic powder, Science Report, RITU 29 (1981) 343-350.
  • [6] S. Mudry, V. Prokhorenko, S. Prokhorenko, I. Shtablavyj, A. Panas, Influence of Ni-atoms addition on the structure of In-Ga-Sn liquid ternary eutectic alloy, Proceedings of the 13th International Scientific Conference “Achievements in Mechanical and Materials Engineering” AMME’2005, Gliwice-Wisła, 2005, 451-454.
  • [7] G. Mrowka-Nowotnik, J. Sieniawski, M. Wierzbinska, Intermetallic phase particles in 6082 aluminium alloy, Archives of Materials Science and Engineering 28/2 (2007) 69-76.
  • [8] A. Dolata-Grosz, M. Dyzia, J. Śleziona, Solidification analysis of AMMCs with ceramic particles, Archives of Materials Science and Engineering 28/7 (2007) 401-404.
  • [9] B.P. Pisarek, The crystallization of the aluminium bronze with additions of Si, Cr, Mo and/or W, Archives of Materials Science and Engineering 28/8 (2007) 461-466.
  • [10] L.A. Dobrzański, M. Kremzer, A. Nagel, Aluminium EN AC-AlSi12 alloy matrix composite materials reinforced by Al2O3 porous performs, Archives of Materials Science and Engineering 28/10 (2007) 593-596.
  • [11] M. Dyzia, J. Śleziona, Aluminium matrix composites reinforced with AlN particles formed by in situ reaction, Archives of Materials Science and Engineering 31/1 (2008) 17-20.
  • [12] D.T. Cromer, J.T. Waber, Scattering factors computed from relativistic dirac-slater wave functions, Acta Crystallographica 18 (1965) 104-109.
  • [13] J. Krogh-Moe, A method for converting experimental X-ray intensities to an absolute scale, Acta Crystallographica 9 (1956) 951-953.
  • [14] B. Baum, G. Hasin, G. Tiagunov, Zhidkaja stal, Moskwa, Metallurgiya, 1984 (in Russian).
  • [15] Ya. Dutchak, N. Klym, V. Galchak, S. Mudry, Korrelacija difrakcionnyh I termodinamicheskih dannyh dvojnych rasplavov na osnove tallija, Zhurnal fizicheskoj himii 54 (1980) 875-879 (in Russian).
  • [16] D.S. Kanibolotsky, O.A. Bieloborodova, N.V. Kotova, V.V. Lisnyak, Thermodynamic properties of liquid Al–Si and Al–Cu alloys, Journal of Thermal Analysis and Calorimetry 70 (2002) 975-983.
  • [17] S.R. Elliot, Medium-range structural order in covalent amorphous solids, Nature 354 (1991) 445-452.
  • [18] J. Brillo, A. Bytchkov, I. Egry, L. Hennet, G. Mathiak, I. Pozdnyakova, D.L. Price, D. Thiaudiere, D. Zanghi, Local structure in liquid binary Al-Cu and Al-Ni alloys, Journal of Non-Crystalline Solids 352 (2006) 4008-4012.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL7-0033-0024
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.