PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mechanical and tribological properties of TiC-based composites for ED machining

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The goal of this work is comparative study of TiC-(Mo, Ni) composites with different TiC-phase content to obtain material with an optimal mechanical and tribological properties, which can be easy shaped by Electro Discharge Machining (EDM). Design/methodology/approach: Three variants of TiC-(Mo, Ni) composites with the different hardening phase to the bonding phase ratio were sintered in vacuum. The influence of the initial TiC hard phase content in the sintered composites on their mechanical and tribological properties as well as ED machinability were investigated. The density, Young modulus, hardness, fracture toughness were measured. Tribological tests were carried out conducted using "pin-on-disc" and "ball-on-disc" methods. Wire Electro Discharge Machining (WEDM) performance preliminary test were realised also. Findings: The microstructure of sintered TiC-(Mo, Ni) materials is characterized by a ring structure of carbides. Mechanical properties and wear resistance are better for samples with higher TiC content. All variants of investigated materials are characterized by good WED machinability. Research limitations/implications: Obtained materials are characterized by good mechanical, tribological and working properties but homogeneity of microstructure should be improved. Farther works will be continued also for limitation of the metallic phase content up to 5 vol. %. Practical implications: After additional technological evaluation tests, obtained materials could be used for the different parts of machines and wear components (e.g. nozzles, plungers) shaped by EDM. Originality/value: New type of TiC-metal bonded composite with high content of hard phase which could be shaped by EDM.
Rocznik
Strony
83--88
Opis fizyczny
Bibliogr. 19 poz.
Twórcy
autor
autor
autor
autor
autor
Bibliografia
  • [1] H.O. Pierson, Handbook of refractory carbides and nitrides, Noyes Publications, Westwood, 1996.
  • [2] J. Kubarsepp, H. Klaasen, J. Pirso, Behaviour of TiC–base cermets in different wear conditions, Wear 249/3–4 (2001) 229-234.
  • [3] J. Pirso, M. Viljus, S. Letunovits, Friction and dry sliding wear behaviour of cermets, Wear 260 (2006) 815-824.
  • [4] L. Jaworska, B. Smuk, D. Królicka, J. Wszołek, Cermets for cutting edges, Composites 3 (2005) 21-25 (in Polish).
  • [5] S.K. Bhaumik, C. Divakar, A.K. Singh, G.S. Upadhyaya, Synthesis and sintering of TiB2 and TiB2–TiC composite under high pressure, Materials Science and Engineering A 279 (2000) 275-281.
  • [6] M. Rosso, Ceramic and metal matrix composite, route and properties, Proceedings of the 12th Scientific International Conference “Achievements in Mechanical and Materials Engineering” AMME’2003, Gliwice–Zakopane, 2003, XXXV-l.
  • [7] T. Lee, J. Deng, Mechanical surface treatments of electro–discharge machined (EDMed) ceramic composite for improved strength and reliability, Journal of the European Ceramic Society 22 (2002) 545-550.
  • [8] B. Lauwers, J.P. Kruth, W. Liu, W. Eeraerts, B. Schacht, P. Bleys, Investigation of material removal mechanisms in EDM of composite ceramic materials, Journal of Materials Processing Technology 149 (2004) 347-352.
  • [9] I. Puertas, C.J. Luis, A study on the electrical discharge machining of conductive ceramics, Journal of Materials Processing Technology 153–154 (2004) 1033-1038.
  • [10] A. Jankowiak, F. Collardey, P. Blanchart, Electrical behaviour at high voltage on surface of SiC- β SiAlON ceramic composites, Journal of the European Ceramic Society 25 (2005) 13-18.
  • [11] M. Balog, P. Sajgalík, F. Hofer, P. Warbichler, K. Frohlich, O. Vavra, J. Janega, J.L. Huang, Electrically conductive SiC–(Nb,Ti)ss-(Nb,Ti)Css cermet, Journal of the European Ceramic Society 26 (2006) 1259-1266.
  • [12] J. Li, Y.S. Yin, R.X. Shi, L.P. Ma, J. Li, Microstructure and mechanical properties of Al2O3-TiC-4vol.%Co composites prepared from cobalt coated powders, Surface and Coatings Technology 200 (2006) 3705-3712.
  • [13] P. Ettmayer, H. Kolaska, W. Lengauer, K. Dreyer, Ti(C,N) cermets - Metallurgy and properties, International Journal of Refractory Metals and Hard Materials 13 (1995) 343-351.
  • [14] A. Umansky, A. Panasyuk, L. Beloborodov, V. Smirnov, N. Sereda, Study of structure and phase–formation in (TiC–Mo2C)-(Ni–Mo) composite materials, Proceedings of the 9th World Ceramic Congress and Forum “New Materials” CIMTEC, Florence, 1999, Part C, 723-728.
  • [15] L. Jaworska, M .Rozmus, B. Królicka, A. Twardowska, Functionally graded cermets, Journal of Achievements in Materials and Manufacturing Engineering 17 (2006) 73-76.
  • [16] K. Friak, Calphad, SGTE Phase diagram collection 14 (1990) 311-320.
  • [17] K. Niihara, R. Morena, D.P.H. Hasselman, Evaluation of KIc of brittle solids by the indentation method with low crack-to-indent ratios, Journal of Materials Science Letters 1 (1982) 13-16.
  • [18] M. Szutkowska, Indentation fracture toughness of ceramics based on alumina, Proceedings of the 17th Advanced Materials and Technologies Conference “Physical Metallurgy and Materials Science” AMT’2004, Łódź, 2004, Materials Engineering 3/140 (2004) 290-293.
  • [19] F. Akhtar, S.J. Guo, Microstructure, mechanical and fretting wear properties of TiC–stainless steel composites, Materials Characterization 59 (2008) 84-90.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL7-0033-0013
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.