PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nanomateriały we wspomaganiu terapii fotodynamicznej

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Nanomaterials for PDT applications
Języki publikacji
PL
Abstrakty
PL
Nanotechnologia obecna jest już w wielu dziedzinach nauki i gospodarki. Jednakże najważniejsze zastosowanie struktury submikronowe znajdują w elektronice i biotechnologii. Nanotechnologia stymuluje także rozwój medycyny. Duże zainteresowanie wzbudza zastosowanie nanoma-terialów do poprawy efektywności terapii fotodynamicznej. Niniejsza praca zawiera krótki przegląd metod polepszenia właściwości farmakokinetycznych fotouczulaczy stosowanych w PDT.
EN
Nanotechnology became popular in many fields of contemporary science and technology. The main areas of applications are in electronics and biotechnology. The developments in nanotechnology also stimulate the progress in medicine. There is an increasing interest in applications of nanomaterials for improving the efficacy of photodynamic therapy. The presented paper is a short survey of the methods proposed for optimizing the pharmacokinetic properties of PDT photosensitizers.
Wydawca
Rocznik
Strony
178--181
Opis fizyczny
Bibliogr. 44 poz.
Twórcy
autor
  • Instytut Inżynierii Biomedycznej i Pomiarowej, Politechnika Wrocławska, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, teł. +48 (0) 71 320 65 80, 146785@student.pwr.wroc.pl
Bibliografia
  • 1. H. Podbielska, A. Sieroń i W. Stręk (pod red.): Diagnostyka i terapia fotodynamiczna, Wydawnictwo Medyczne Urban & Partner, Wroclaw 2004.
  • 2. Y. Konan, R. Gurny, E. Allemann: State of the art in the delivery of photosensitizers for photodynamic therapy, Journal of Photochemistry and Photobiology B: Biology 66, 2002, s. 89-106.
  • 3. T. Mang: Lasers and light sources for PDT: past, present and future, Photodiagnosis and Photodynamic Therapy, 2004, s. 43-48.
  • 4. R. Allison, H. Mota, V. Bagnato, C. Sibata: Bio-nanotechnology and photodynamic therapy-State of the art review, Photodiagnosis and Photodynamic Therapy, 5,2008, s. 19-28
  • 5. R. Allison, G. Downie, R. Cuenca, X. Hu, C. Childs, C. Sibata: Photosensitizers in clinical PDT, Photodiagnosis and Photodynamic Therapy, 2004, s. 27-42.
  • 6. I. El-Sayed, X. Huang, M. El-Sayed: Selective laser photothermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles, Cancer Letters 239, 2006, s. 129-135.
  • 7. M. MacCormack, Photodynamic Therapy, Advances in Dermatology 22, 2006, s. 219-258.
  • 8. D. Kessel: Delivery of photosensitizing agents, Advanced Drug Delivery Reviews 56, 2004, s. 7- 8.
  • 9. S. Sahoo, V. Labhasetwar: Nanotech approaches to drug delivery and imaging, Drug Discovery Today, vol. 8, 2003, s. 1112-1120.
  • 10. O. Koo, I. Rubinstein, H. Onyuksel: Role of nanotechnology in targeted drug delivery and imaging: a concise review, Na-nomedicine: Nanotechnology, Biology, and Medicine 1, 2005, s. 193-212.
  • 11. D. Bechet, P. Couleaud, C. Frochot, M. Viriot, F. Guille-min, M. Barberi-Heyob: Nanoparticles as vehicles for delivery of photodynamic therapy agents, Trends in Biotechnology vol. 26, no. 11, 2008, s. 612-621.
  • 12. I. Brigger, C. Dubernet, P. Couvreur: Nanoparticles in cancer therapy and diagnosis, Advanced Drug Delivery Reviews 54, 2002, s. 631-651.
  • 13. J. Moan, Q. Peng: An outline of the history of PDT [w:] T. Patrice (pod red.): Photodynamic Therapy. Comprehensive Series in Photochemistry and Photobiology, The Royal Society of Chemistry, 2003.
  • 14. F. Marcucci, F. Lefoulon, Active targeting with particulate drug carriers in tumor therapy: fundamentals and recent progress, Drug Discovery Today, vol. 9, no. 5, 2004, s. 219-228.
  • 15. B. Pegaz, E. Debefve, J. Ballini, Y. Konan-Kouakou, H. van den Bergh: Effect of nanoparticle size on the extravasation and the photothrombic activity of meso(p-tetracarboxyphe-nyl)porphyrin, Journal of Photochemistry and Photobiology B: Biology 85, 2006, s. 216-222.
  • 16. P. Ghosh, G. Han, M. De, Ch.Kim, V. Rotello: Gold nanoparticles in delivery applications, Advanced Drug Delivery Reviews 60, 2008, s. 1307-1315.
  • 17. M. Wieder, D. Hone, M.J. Cook, M.M. Handsley, J. Ga-vrilovie, D. Russell: Intracellular photodynamic therapy with photosensitizer-nanoparticle conjugates: cancer therapy using a Trojan horse, Photochemical & Photobiological Sciences 5(8), 2006, s. 727-34.
  • 18. I. Roy, T. Ohulchanskyy, H. Pudavar, E. Bergey, A. Ose-roff, J. Morgan: Ceramic-based nanoparticles entrapping water insoluble photosensitizing anticancer drugs: a novel drug--carrier system for photodynamic therapy, Journal of the American Chemical Society 125, 2003, s. 7860-7865.
  • 19. Y. Konan, M. Berton, R. Gurny, E. Allemann: Enhanced photodynamic activity of meso-tetra(4-hydroxyphenyl) porphyrin by incorporation into sub-200 nm nanoparticles, European Journal of Pharmaceutical Sciences 18, 2003, s. 241-249.
  • 20. B. Pegaz, E.Debefve, F. Borle, J. Ballini, H. van den Bergh, Y. Kouakou-Konan: Encapsulation of porphyrins and chlorins in biodegradable nanoparticles: The effect of dye lipophilicity on the extravasation and the photothrombic activity. A comparative study, Journal of Photochemistry and Photobiology B: Biology 80, 2005, s. 19-27.
  • 21. Y. Konan, R. Cerny, J. Favet, M. Berton, R. Gurny, E. Allemann: Preparation and characterization of sterile sub-200 nm meso-tetra(4-hydroxylphenyl)porphyrin-loaded nanoparticles for photodynamic therapy, European Journal of Pharmaceutics and Biopharmaceutics 55, 2003, s. 115-124.
  • 22. A. Vargas, B. Pegaz, E. Debefve, Y. Konan-Kouakoub, N. Lange, J.e Ballini, H.t van den Bergh, R. Gurny, F. Delie: Improved photodynamic activity of porphyrin loaded into nanoparticles: an in vivo evaluation using chick embryos, International Journal of Pharmaceutics 286, 2004, s. 131-145.
  • 23. K. Soppimath, T. Aminabhavi, A. Kulkami, W. Rudziński: Biodegradable polymeric nanoparticles as drug delivery devices, Journal of Controlled Release 70, 2001, s. 1-20.
  • 24. E. Ricci-Junior, J. Marchetti: Zinc(II) phthalocyanine loaded PLGA nanoparticles for photodynamic therapy use, International Journal of Pharmaceutics 310, 2006, s. 187-195.
  • 25. W. Tang, H. Xu, E. Park, M. Philbert, R. Kopelman, Encapsulation of methylene blue in polyacrylamide nanoparticle platforms protects its photodynamic effectiveness, Biochemical and Biophysical Research Communications no 369, 2008, s. 579-583.
  • 26. A. Lavasanifar, J. Samuel, G. Kwon: Micelles of polyethylene oxide)-block-poly(N-alkyl stearate L-aspartamide): synthetic analogues of lipoproteins for drug delivery, Journal of Biomedical Materials Research, vol. 52, no. 4, 2000, s. 831-835.
  • 27. K.Yasugi, Y. Nagasaki.a, M. Kato.a, K. Kataoka: Preparation and characterization of polymer micelles from polyethylene glycol)-poly(D,L-lactide) block copolymers as potential drug carrier, Journal of Controlled Release 62, 1999, s. 89-100.
  • 28. C. Rijcken, J. Hofman, F. van Zeeland, W. Hennink, C. van Nostrum: Photosensitiser-loaded biodegradable polymeric micelles: Preparation, characterisation and in vitro PDT efficacy, Journal of Controlled Release 124, 2007, s. 144-153.
  • 29. C. van Nostrum: Polymeric micelles to deliverphotosensitizers for photodynamic therapy, Advanced Drug Delivery Reviews 56, 2004, s. 9-16.
  • 30. J. Chung, M. Yokoyama, M. Yamato, T. Aoyagi, Y. Saku-rai, T. Okano, Thermo-responsive drug delivery from polymeric micelles constructed using block copolymers of poly(N-iso-propylacrylamide) and poly (buty Imethacrylate), Journal of Controled Release 62, 1999, s. 115-127.
  • 31. D. Neradovic, C. van Nostrum, W. Hennink: Thermore-sponsive polymeric micelles with controlled instability based on hydrolytically sensitive N-isopropylacrylamide copolymers, Ma-cromolecules 34, 2001, s. 7589-7591.
  • 32. J. Chung, M. Yokoyama, T. Okano: Inner core segment design for drug delivery control of thermo-responsive polymeric micelles, Journal of Controlled Release 65, 2000, s. 93-103.
  • 33. V. Torchilin: PEG-based micelles as carriers of contrast agents for different imaging modalities, Advanced Drug Delivery Reviews 54, 2002, s. 235-252.
  • 34. S. Krasnici, A. Werner, M. Eichhorn, M. Schmitt-Sody, S. Pahernik, B. Sauer, Brita Schulze, M. Teifel, U. Michaelis, K. Naujoks, Marc Dellian: Effect of the surface charge of liposomes on their uptake by angiogenic tumor vessels, International Journal of Cancer 105, 2003, s. 561-567.
  • 35. G. Thurston, J. McLean, M. Rizen, P. Baluk, A. Haskell, T. Murphy, D. Hanahan, D. McDonald: Canonic Liposomes Target Angiogenic Endothelial Cells in Tumors and Chronic Inflammation in Mice, The Journal of Clinical Investigation, vol. 101, 7, 1998, s. 1401-1413.
  • 36. S. Svenson, D. Tomalia: Dendrimers in biomedical applications-reflections on the field, Advanced Drug Delivery Reviews 57, 2005, s. 2106- 2129.
  • 37. A. Caminade, R. Laurent, J. Majoral: Characterisation of dendrimers, Advanced Drug Delivery Reviews 57, 2005, s. 2130- 2146.
  • 38. K. Kitchens, M. El-Sayed, H. Ghandehar: Transepithelial and endothelial transport of poly (amidoamine) dendrimers, Advanced Drug Delivery Reviews 57, 2005, s. 2163- 2176.
  • 39. R. Duncan, L. Izzo: Dendrimer biocompatibility and toxicity, Advanced Drug Delivery Reviews 57,2005, s. 2215- 2237.
  • 40. T. Okuda, S.u Kawakami, T. Maeie, T. Niidome, F. Yamashita, M. Hashida: Biodistribution characteristics of amino acid dendrimers and their PEGylated derivatives after intravenous administration, Journal of Controlled Release 114, 2006, s. 69-77.
  • 41. M. El-Sayed, M. Kiani, M. Naimark, A. Hikal, H. Ghan-dehari: Extravasation of poly(amidoamine) (PAMAM) dendrimers across microvascular network endothelium, Pharmaceutical Research, vol. 18, no. 1, 2001, s. 23-28.
  • 42. N. Malik, R. Wiwattanapatapee, R. Klopsch, K. Lorenz, H. Frey, J.W. Weener, E.W. Meijer, W. Paulus, R. Duncan: Dendrimers: Relationship between structure and biocompatibility in vitro and preliminary studies on the biodistribution of1251-labelled polyamidoamine dendrimers in vivo, Journal of Controlled Release 65, 2000, s. 133-148.\
  • 43. F. Yan, R. Kopelman, The embedding of metatetraQiydroxy-phenyl)-chlorin into silica nanoparticle platforms for photodynamic therapy and their singlet oxygen production and pH-de-pendent optical properties, Photochemistry and Photobiology 78, 2003, s. 587-591.
  • 44. Z.Lu, F. Ye, A. Vaidya: Polymer platforms for drug delivery and biomedical imaging, Journal of Controlled Release 122, 2007, s. 269-277.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL7-0032-0036
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.