PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Micromechanical model of rough contact between rock blocks with application to wave propagation

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The relationship between effective stiffness of rough contacts of rock blocks and transmission of plane waves is well known. Effective stiffness of a rough contact may be related to the force-deformation behavior of the asperity contacts and the statistical description of rock joint surface topography through micromechanical methods. In this paper, a micromechanical methodology for computing the overall rock contact effective stiffness is utilized along with the imperfectly bonded interface model to investigate how transmitted and reflected wave amplitudes are affected by the incident wave frequency, rock joint closure and the existing rock joint normal stress conditions. As a result, expressions for reflected and transmitted wave amplitudes as well as group time delay of the wave-packets are obtained and parametrically evaluated.
Czasopismo
Rocznik
Strony
1109--1128
Opis fizyczny
Bibliogr. 28 poz.
Twórcy
autor
autor
  • Department of Civil Engineering, University of Kansas, Lawrence, KS, USA, amisra@ku.edu
Bibliografia
  • Achenbach, J.D. (1973), Wave Propagation in Elastic Solids, North Holland, New York.
  • Adler, R.J., and D. Firman (1981), A non-Gaussian model for random surfaces, Phil. Trans. Roy. Soc. Lond. A 303, 433-462.
  • Boitnott, G.N., R.L. Biegel, C.H. Scholz, N. Yoshioka, and W. Wang (1992), Micromechanics of rock friction 2. Quantitative modeling of initial friction with contact theory, J. Geophys. Res. 97, 8965-8978, DOI: 10.1029/92JB00019.
  • Brown, S.R., and C.H. Scholz (1985), Closure of random elastic surfaces in contact, J. Geophys. Res. 90, B7, 5531-5545, DOI: 10.1029/JB090iB07p05531
  • Brown, S.R., and C.H. Scholz (1986), Closure of rock joints, J. Geophys. Res. 91, B7, 4939-4945, DOI: 10.1029/JB091iB05p04939.
  • Gu, B., R. Suarez-Rivera, K.T. Nihei, and L.R. Myer (1996), Incidence of plane waves upon a fracture, J. Geophys. Res. 101, B11, 25337-25346.
  • Johnson, K.L. (1985), Contact Mechanics, Cambridge University Press, London. Kendal, K., and D. Tabor (1971), An ultrasonic study of area of contact between stationary and sliding surfaces, Proc. R. Soc. A 323, 321-340, DOI: 10.1098/rspa.1971.0108.
  • Mindlin, R.D., and H. Deresiewicz (1953), Elastic spheres in contact under varying oblique forces, J. Appl. Mech. 20, 3, 327-344.
  • Misra, A. (1995), Interfaces in particulate materials. In: A.P.S. Selavadurai and .P. Boulon (eds.), Mechanics of Geomaterial Interfaces, 513-536,
  • Elsevier Sci., New York, DOI: 10.1016/S0922-5382(06)80024-3.
  • Misra, A. (1997), Mechanistic model for contact between rough surfaces, J. Eng. Mech., 123, 5, 475-484, DOI: 10.1061/(ASCE)0733-9399(1997)123:5(475).
  • Misra, A. (1999), Micromechanical model for anisotropic rock joints, J. Geophys. Res. 104, 23175-23187, DOI: 10.1029/1999JB900210.
  • Misra, A. (2002), Effect of asperity damage on shear behavior of single fracture, Eng. Fracture Mech. 69, 17, 1997-2014, DOI: 10.1016/S0013-7944(02)00073-5.
  • Murty, G.S. (1975), A theoretical for the attenuation and dispersion of stoneley waves at the loosely bonded interface of elastic half-space, Phys. Earth. Planet. Int. 11, 65-79, DOI: 10.1016/0031-9201(75)90076-X.
  • Murty, G.S., and V. Kumar (1991), Elastic wave propagation with kinematics discontinuity along a non-ideal interface between two isotropic elastic halfspaces, J. Nondest. Eval. 10, 2, 39-53, DOI: 10.1007/BF00568099.
  • Nagy, P.B. (1992), Ultrasonic classification of imperfect interfaces, J. Nondest. Eval. 11, 3/4, 127-139, DOI: 10.1007/BF00566404.
  • Nakagawa, S., K.T. Nihei, and L.R. Myer (2004), Plane wave solution for elastic wave scattering by heterogeneous fracture, J. Acoust. Soc. Am. 115, 6, 2761-2772, DOI: 10.1121/1.1739483.
  • Nayak, P.R. (1971), Random process model of rough surfaces, J. Lubr. Technol. 93, 398-407.
  • Pecorari, C. (2003), Nonlinear interaction of plane ultrasonic waves with an interface between rough surfaces in contact, J. Acoust. Soc. Am. 113, 6, 3065-3072, DOI: 10.1121/1.1570437.
  • Pyrak-Nolte, L.J., and D.D. Nolte (1992), Frequency dependence of fracture stiffness, Geophys. Res. Lett. 19, 3, 325-328, DOI: 10.1029/91GL03179.
  • Pyrak-Nolte, L.J, L.R. Myer, and N.G.W. Cook (1990), Transmission of seismic waves across single natural fractures, J. Geophys. Res. 95, 8617-8638, DOI: 10.1029/JB095iB06p08617.
  • Rokhlin, S.I., and Y.J. Wang (1991), Analysis of boundary conditions for elastic wave interaction with an interface between two solids, J. Acoust. Soc Am. 89, 503-515, DOI: 10.1121/1.400374.
  • Schoenberg, M. (1980), Elastic wave behavior across linear slip interfaces, J. Acoust. Soc Am. 68, 1516-1521, DOI: 10.1121/1.385077.
  • Swan, G. (1983), Determination of stiffness and other joint properties from roughness measurements, Rock Mech. Rock Eng. 16, 19-38, DOI: 10.1007/BF01030216.
  • Yoshioka, N. (1994), Elastic behavior of contacting surfaces under normal loads: A computer simulation using three-dimensional surface topographies, J. Geophys. Res. 99, 15549-15560, DOI: 10.1029/94JB00938.
  • Yoshioka, N. (1997), A review of the micromechanical approach to the physics of contacting surfaces, Tectonophysics 277, 29-40, DOI: 10.1016/S0040-1951(97)00076-0.
  • Yoshioka, N., and C.H. Scholz (1989a), Elastic properties of contacting surfaces under normal and shear loads. 1: Theory, J. Geophys. Res. 94, 17681-17690, DOI: 10.1029/JB094iB12p17681.
  • Yoshioka, N., and C.H. Scholz (1989b), Elastic properties of contacting surfacesunder normal and shear loads. 2: Comparison of theory with experiment, J. Geophys. Res. 94, 17691-17700, DOI: 10.1029/JB094iB12p17691.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL7-0028-0032
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.