PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Turbulence in vegetated flows: Volume-average analysis and modelling aspects

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Two approaches for the modelling of turbulence in vegetated flows have been developed in the past. The “microscopic” approach which is straightforward but limited to simple cases and the “macroscopic” approach which is based on Volume Average Theory (VAT). In this study, aspects of Volume-Average (VA) analysis and modelling are investigated for turbulent vegetated flow using computed three-dimensional results from the solution of the Reynolds-Averaged Navier-Stokes (RANS) equations around a representative vegetal element. In particular (a) the VA transport equations for k and ?, based on VAT, are properly derived, (b) the Boussinesq hypothesis for the VA quantities, employed in -<ε> turbulence models is tested, and (c) the values of the coefficients used in such turbulence models are assessed in comparison with those used in the classical turbulence models.
Słowa kluczowe
Czasopismo
Rocznik
Strony
894--917
Opis fizyczny
bibliogr. 27 poz.
Twórcy
autor
autor
  • Hydraulics Laboratory, Department of Civil Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece, dsouliot@civil.auth.gr
Bibliografia
  • Antohe, B.V., and J.L. Lage (1997), A general two-equation macroscopic turbulence model for incompressible flow in porous media, Int. J. Heat Mass Transfer 40, 3013-3024.
  • Ayotte, K.W., J.F. Finnigan, and M.R. Raupach (1999), A second-order closure for neutrally stratified vegetative canopy flow, Bound.-Layer Meteor. 90, 189-216.
  • de Lemos, M.J.S., and M.H.J. Pedras (2001), Recent Mathematical Models for Turbulent Flow in Saturated Rigid Porous media, J. Fluids Eng. 123, 935-940.
  • Dunn, C., F. Lopez, and M.H. Garcia (1996), Mean flow and turbulence in a laboratory channel with simulated vegetation, Hydraulic Eng. Ser. 51, University of Illinois, Urbana, IL.
  • Finnigan, J. (2000), Turbulence in plant canopies, Ann. Rev. Fluid Mech. 32, 519-571.
  • Fluent Inc. (2001), Fluent 6.0 documentation, Lebanon, USA.
  • Foudhill, H., Y. Brunet, and J.-P. Caltagirone (2005), A fine-scale k-? model for atmospheric flow over heterogeneous landscapes, Environ. Fluid Mech. 5, 247-265.
  • Getachew, D., W.J. Minkowycz, and J.L. Lage (2000), A modified form of the k-? model for turbulent flows of an incompressible fluid in porous media, Int. J. Heat Mass Transfer 43, 2909-2915.
  • Masuoka, T., and Y. Takatsu, (1996), Turbulence model for flow through porous media, Int. J. Heat Mass Transfer 39, 13, 2803-2809.
  • Nakayama, A., and F.A. Kuwahara (1999), A macroscopic turbulence model for flow in a porous medium, J. Fluids Eng. 121, 427-433.
  • Nikora, V.I., I.K. McEwan, S.R. McLean, S.E. Coleman, D. Pokrajac, and R. Walters, (2007), Double-averaging concept for rough-bed open-channel and overland flows: Theoretical background, J. Hydraul. Eng. ASCE 133, 873-883.
  • Nield, P.A. (2001), Alternative models of turbulence in a porous medium and related matters, J. Fluids Eng. ASME 123, 928-934.
  • Pedras, M.H.J., and M.J.S. de Lemos (2001), Macroscopic turbulence modelling for incompressible flow through undeformable porous media, Int. J. Heat Mass Transfer, 44, 1081-1093.
  • Pinson, F., O. Gregoire, and O. Simonin (2006), k-? macro-scale modeling of turbulence based on a two scale analysis in porous media, Int. J. Heat Fluid Flow 27, 955-966.
  • Poggi, D., A. Porporato, L. Ridolfi, D.-J. Albertson, and G.G. Katul (2004), The effect of vegetation density on canopy sub-layer turbulence, Bound.-Layer Meteor. 111, 565-587.
  • Prinos, P., Sofialidis D., and E. Keramaris (2003), Flow characteristics over and within a porous bed, J. Hydraul. Eng. ASCE, 129, 9, 720-734.
  • Raupach, M.R., and R.H. Shaw (1982), Averaging procedures for flow within vegetation canopies, Bound.-Layer Meteor. 22, 79-90.
  • Righetti, M., and A. Armanini (2002), Flow resistance in open channel flow with sparsely distributed bushes, J. Hydrol. 269, 55-64.
  • Rodi, W. (1980), Turbulence Models in Hydraulics, IAHR Publication.
  • Silva, R.A., and M.J.S. de Lemos (2003), Turbulent flow in a channel occupied by a porous layer considering the sress jump at the interface, Int. J. Heat Mass Transfer 46, 5113-5121.
  • Slattery, J.C. (1999), Advanced Transport Phenomena, Cambridge Univ. Press, Cambridge, UK.
  • Sogachev, A., and O. Panverov (2006), Modification of two-equation models to account for plant drag, Bound.-Layer Meteor. 121, 229-266.
  • Souliotis, D., and P. Prinos (2006), Vegetation turbulence: From RANS micro-computations to macro-analysis, Proc. 7th Intern. Conference of Hydroscience and Engineering, ICHE, 2006, Philadelphia, USA.
  • Souliotis, D., and P. Prinos (2008), Macroscopic turbulence models and their application in turbulent vegetated flows, Submitted to ETTM08 International Conference, Cyprus.
  • Travkin, V.S. (2001), Discussion on Alternative models of turbulence in a porous medium and related matters, J. Fluids Eng. ASME 123, 931-934.
  • Uittenbogaard, R.(2003), Modelling turbulence in vegetated aquatic flows, International Workshop on RIParian FORest Vegetated Channels: Hydraulic, Morphological and Ecological Aspects, Trento, Italy, 20-22 February 2003.
  • Whitaker, S. (1999), The Method of Volume Averaging, Kluwer Academic Publishers, Dordrecht.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL7-0027-0019
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.