PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Interface between turbulent flows above and within rough porous walls

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper explores the concept of a macroscopic boundary between turbulent flows above and within rough permeable walls. The macroscopic boundary and the associated conditions for macroscopic flow variables have been thoroughly investigated for laminar, but not for turbulent flows. The literature on laminar flows follows two main conceptual models of the boundary: sharp boundary with step changes in macroscopic variables and gradual boundary with smooth changes of variables. The former approach is usually associated with the two-domain simulation models and the latter one with the single-domain models. This paper presents the derivation of the step conditions for velocity and shear stress at the macroscopic boundary between turbulent boundary layer and turbulent porous media flows. The physical meaning of the main terms in the shear stress condition is discussed in order to clarify the relationship between two-domain and single-domain simulation models.
Czasopismo
Rocznik
Strony
824--844
Opis fizyczny
bibliogr. 48 poz.
Twórcy
autor
autor
Bibliografia
  • Alazmi, B., and K. Vafai (2001), Analysis of fluid flow and heat transfer interfacial conditions between a porous medium and a fluid layer, Int. J. Heat Mass Transfer 44, 1735-1749.
  • Bear, J. (1979), Hydraulics of Groundwater, McGraw-Hill, New York.
  • Beavers, G.S., and D.D. Joseph (1967), Boundary conditions at a naturally permeable wall, J. Fluid Mechanics 30, 1, 197-207.
  • Breugem, W.P., and B.J. Boersma (2005), Direct numerical simulations of turbulent flow over a permeable wall using a direct and a continuum approach, Phys. Fluids 17, 1-15.
  • Brinkman, H.C. (1947), A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles, Appl. Scient. Res. A1, 27-34.
  • Cheng, P., and D. Vortmeyer (1988), Transverse thermal dispersion and wall channelling in a packed bed with forced convective flow, Chem. Eng. Sci. 43, 2523-2532.
  • de Lemos, M.J.S. (2005), Turbulent kinetic energy distribution across the interface between a porous medium and a clear region, Int. Comm. Heat Mass Transfer 32, 1-2, 107-115.
  • de Lemos, M.J.S., and R.A. Silva (2006), Turbulent flow over a layer of a highly permeable medium simulated with a diffusion-jump model for the interface, Int. J. Heat Mass Trans. 49, 3-4, 546-556.
  • Djenidi, L., R.A. Antonia, and F. Anselmet (1994), LDA measurements in a turbulent boundary layer over a d-type rough wall, Expts. Fluids 16, 323-329, DOI: 10.1007/BF00195431.
  • Dybbs, A., and R.V. Edwards (1984), A new look at porous media fluid mechanics - Darcy to turbulent. In: J. Bear and M.Y. Corapcioglu (eds.), Fundamentals of Transport Phenomena in Porous Media, Martinus Nijhoff, Amsterdam, 199-256.
  • Finnigan, J.J. (2000), Turbulence in plant canopies, Ann. Rev. Fluid Mech. 32, 519-571.
  • Gimenez-Curto, L.A., and M.A. Corniero Lera (1996), Oscillating turbulent flow over very rough surfaces, J. Geophys. Res. 101, 20745-20758.
  • Goharzadeh, A., A. Khalili, and B.B. Jorgensen (2005), Transition layer thickness at a fluid-porous interface, Phys. Fluids 17, 5, 057102-057102-10.
  • Goyeau, B., D. Lhuillier, D. Gobin, and M.G. Velarde (2003), Momentum transport at a fluid-porous interface, Int. J. Heat Mass Transfer 46, 21, 4071-4081
  • Gray, W.G., and P.C.Y. Lee (1977), On the theorems for local volume averaging of multiphase systems, Int. J. Multiphase Flow 3, 333-340.
  • James, D.F., and A.M. Davis (2001), Flow at the interface of a model fibrous porous medium, J. Fluid Mechanics 426, 47-72.
  • Jang, J.Y., and J.L. Chen (1992), Forced convection in a parallel plate channel partially filled with a high porosity medium, Int. Comm. Heat Mass Transfer 19, 263-273.
  • Kim, S.J., and C.Y. Choi (1996), Convection heat transfer in porous and overlying layers heated from below, Int. J. Heat Mass Transfer 39, 319-329.
  • Kuznetsov, A.V. (2004), Numerical modeling of turbulent flow in a composite porous/fluid duct utilizing a two-layer k-eps model to account for interface roughness, Int. J. Thermal Sci. 43, 11, 1047-1056.
  • Kuznetsov, A.V., and S.M. Becker (2004), Effect of the interface roughness on turbulent convective heat transfer in a composite porous/fluid duct, Int. Comm. Heat Mass Transfer 31, 1, 11-20.
  • Kuznetsov, A.V., and M. Xiong (2003), Development of an engineering approach to computations of turbulent flows in composite porous/fluid domains, Int. J. Thermal Sci. 42, 913-919.
  • Larson, R.E., and J.J. Higdon (1986), Microscopic flow near the surface of two-dimensional porous media. Part 1: Axial flow, J. Fluid Mechanics 166, 449-472.
  • Lundgren T.S. (1972), Slow flow through stationary random beds and suspensions of spheres, J. Fluid Mechanics 51, 273-299.
  • Neale, G., and W. Nader (1974), Practical significance of Brinkamn's extension of Darcy's law: coupled parallel flows within a channel and a bounding porous medium, Can. J. Chem. Eng. 52, 475-478.
  • Nikora, V., D. Goring, I. McEwan, and G. Griffiths (2001) Spatially-averaged open-channel flow over rough bed, J. Hydraul. Eng. ASCE 127, 2, 123-133.
  • Nikora, V, I. McEwan, S. McLean, S. Coleman, D. Pokrajac, and R. Walters (2007), Double averaging concept for rough-bed open-channel and overland flows: Theoretical background, J. Hydr. Eng. ASCE 133, 8, 873-883.
  • Ochoa-Tapia, A.J., and S. Whitaker (1995a), Momentum transfer at the boundary between a porous medium and a homogeneous fluid. I: Theoretical development, Int. J. Heat Mass Transfer 38, 14, 2635-2646.
  • Ochoa-Tapia, A.J., and S. Whitaker (1995b), Momentum transfer at the boundary between a porous medium and a homogeneous fluid. II: Comparison with experiment, Int. J. Heat Mass Transfer 38, 14, 2647-2655.
  • Ochoa-Tapia, J.A., and S. Whitaker (1998), Momentum jump condition at the boundary between a porous medium and a homogeneous fluid: Inertial effects, J. Porous Media 1, 201-217.
  • Pokrajac, D., C. Manes, and I. McEwan (2007), Peculiar mean velocity profiles within a porous bed of an open channel, Phys. Fluids 19, 9, 098109-1-098109-4
  • Poulikakos, D., and M. Kazmierczak (1987), Forced convection in a duct partially filled with a porous material, J. Heat Transfer 109, 653-662.
  • Prinos, P., D. Sofialidis, and E. Keramaris (2003), Turbulent flow over and within a porous bed, J. Hydr. Eng. ASCE 129, 9, 720-733.
  • Richardson, S.A. (1971), A model for the boundary condition of a porous material, Part 2, J. Fluid Mechanics 49, 327-336.
  • Ruff, J.F., and L.W. Gelhar (1972), Turbulent shear flow in porous boundary, J. Eng. Mech. Divis. 98, EM4, 975-991.
  • Sahraoui, M., and M. Kaviany (1992), Slip and no-slip velocity boundary conditions at the interface of porous, plain media, Int. J. Heat Mass Transfer 35, 927-943.
  • Sangani, A.S., and S. Behl (1989), The planar singular solutions of Stokes and Laplace equations and their application to transport processes near porous surfaces, Phys. Fluids A1, 21-37.
  • Shaffman, P.G. (1971), On the boundary condition at the surface of a porous medium, Stud. Appl. Math. L, 2, 93-101.
  • Shavit, U., G. Bar-Yosef, and R. Rosenzweig (2002), Modified Brinkman equation for a free flow problem at the interface of porous surfaces: The Cantor-Taylor brush configuration case, Water Resour. Res. 38,12, 56-1-56-13.
  • Shimizu, Y., T. Tsujimoto, and H. Nakagawa (1990), Experiment and macroscopic modelling of flow in highly permeable porous medium under free-surface flow, J. Hydrosci. Hydraul. Eng. 8, 1, 69-78.
  • Silva R.A., and M.J.S. de Lemos (2003), Turbulent flow in a channel occupied by a porous layer considering the stress jump at the interface, Int. J. Heat Mass Transfer 46, 26, 5113-5121.
  • Stosser, T., and W Rodi (2004), LES of bar and rod roughened channel flow, Proc. 6 th Int. Conf. on Hydroscience and Engineering (ICHE-2004), May 30-June 3, Brisbane, Australia.
  • Taylor, G.I. (1971), A model for the boundary condition of a porous material, Part 1, J. Fluid Mechanics 49, 319-326.
  • Vafai, K. (1984), Convective flow and heat transfer in variable-porosity media, J. Fluid Mechanics 147, 233-259.
  • Vafai, K., and S.J. Kim (1990a), Fluid mechanics of the interface region between a porous medium and a fluid layer - an exact solution, Int. J. Heat Fluid Flow 11, 254-256.
  • Vafai, K., and S.J. Kim (1990b), Analysis of surface enhancement by a porous substrate, J. Heat Transfer 112, 700-706.
  • Vafai, K., and R. Thiyagaraja (1987), Analysis of flow and heat transfer at the interface region of a porous medium, Int. J. Heat Mass Transfer 30, 1391-1405.
  • Whitaker, S. (1999), The Method of Volume Averaging, Kluwer Academic Publishers, Dordrecht.
  • Wilson, N.R., and R.H. Shaw (1977), A higher order closure model for canopy flow, J. Appl. Meteorol. 16, 1197-1205.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL7-0027-0015
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.