PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Micro- and macro-dispersive fluxes in canopy flows

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Resolving every detail of the three-dimensional canopy morphology and its underlying topography remains untenable when modeling high Reynolds number geophysical flows. How to represent the effects of such a complex morphological variability and any concomittant topographic variability into one-dimensional bulk flow representation remains a fundamental challenge to be confronted in canopy turbulence research. Theoretically, planar averaging to the scale of interest should be applied to the time-averaged mean momentum balance; however, such averaging gives rise to covariance or dispersive terms produced by spatial correlations of time-averaged quantities that remain ‘unclosed’ or require parameterization. When the averaging scale is commensurate with few canopy heights, these covariances can be labeled as ‘micro-dispersive’ stresses. When averaging is intended to eliminate low-wavenumber topographic variations, we refer to these covariances as ‘macro-dispersive’ terms. Two flume experiments were used to explore the magnitude and sign of both micro- and macro-dispersive fluxes relative to their conventional Reynolds stresses counterparts: a rod-canopy with variable roughness density and a dense rod canopy situated on gentle hilly terrain. When compared to the conventional momentum flux, the micro-dispersive fluxes in the lowest layers of sparse canopies can be significant (~50%). For dense canopies, the dispersive terms remain negligible when compared to the conventional momentum fluxes throughout. For the macro-dispersive fluxes, model calculations suggest that these terms can be neglected relative to the Reynolds stresses for a deep canopy situated on a narrow hill. For the region in which topographic variations can interact with the pressure, both model calculations and flume experiments suggest that the macro-dispersive fluxes cannot be neglected, and their value can be 20% of the typical Reynolds stresses.
Czasopismo
Rocznik
Strony
778--799
Opis fizyczny
bibliogr. 47 poz.
Twórcy
autor
autor
  • Dipartimento di Idraulica, Trasporti ed Infrastrutture Civili, Politecnico di Torino, Torino, Italy, davide.poggi@polito.it
Bibliografia
  • Arnfield, J.A. (2003), Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island, Int. J. Climatol. 23, 1-26.
  • Belcher, S.E. (2005), Mixing and transport in urban areas, Phil. Trans. Roy. Soc. Lond. A 363, 1837, 2947-2968.
  • Belcher, S.E., and J.C.R. Hunt (1998), Turbulent flow over hills and waves, Ann. Rev. Fluid Mech. 30, 507-538.
  • Bohm, M., J.J. Finnigan, and M.R. Raupach (2000), Dispersive fluxes and canopy flows: Just how important are they? 24th AMS Conference on Agricultural and Forest Meteorology, 14-18 August 2000, University of California, Davis, CA, 106-107.
  • Britter, R.E., and S.R. Hanna (2003) Flow and dispersion in urban areas, Ann. Rev. Fluid Mech. 35, 469-496.
  • Cava, D., G.G. Katul, A. Scrimieri, D. Poggi, A. Cescatti, and U. Giostra (2006), Buoyancy and the sensible heat flux budget within dense canopies, Bound.-Layer Meteor. 118, 217-240.
  • Cheng, H., and I.P. Castro (2002), Near wall flow over urban-like roughness, Bound.-Layer Meteor. 104, 229-259.
  • Christen, A., and R. Vogt (2004), Direct measurement of dispersive fluxes within a cork oak plantation, 26th AMS Conference on Agricultural and Forest Meteorology, 23-27 August 2004, Vancouver, BC, Canada.
  • Coceal, O., T.G. Thomas, I.P. Castro, and S.E. Belcher (2006), Mean flow and turbulence statistics over groups of urban-like cubical obstacles, Bound.-Layer Meteor. 121, 491-519.
  • Finnigan, J. (2000), Turbulence in plant canopies, Ann. Rev. Fluid Mech. 32, 519-571.
  • Finnigan, J.J., and S.E. Belcher (2004), Flow over a hill covered with a plant canopy, Quart. J. Roy. Met. Soc. 130, 596, 1-29.
  • Hsieh, C.-I., G. Kiely, A. Birkby, and G.G. Katul (2000), An approximate analytical model for footprint estimation of scaler fluxes in thermally stratified atmospheric flows, Advances in Water Resour. 23, 765-772.
  • Jackson, P.S., and J.C.R. Hunt (1975), Turbulent wind flow over a low hill, Quart. J. Roy. Met. Soc. 101, 430, 929-955.
  • Juang, J.Y., G.G. Katul, M.B.S. Siqueira, P.C. Stoy, S. Palmroth, H.R. McCarthy, H.-S. Kim, and R. Oren (2006), Modeling nighttime ecosystem respiration from measured CO2 concentration and air temperature profiles using inverse methods, J. Geophys. Res. 111, D8, D08s05.
  • Kaimal, J.C., and J.J. Finnigan (1994), Atmospheric Boundary Layer Flows: Their Structure and Measurements, Oxford University Press, New York.
  • Kanda, M. (2006), Progress in the scale modeling of urban climate: review, Theor. Appl. Climatol. 84, 23-33, DOI: 10.1007/s00704-005-0141-4.
  • Katul, G.G., and J.D. Albertson (1998), An investigation of higher-order closure models for a forested canopy, Bound.-Layer Meteor. 89, 1, 47-74.
  • Katul, G.G., and J.D. Albertson (1999), Modeling CO2 sources, sinks, and fluxes within a forest canopy, J. Geophys. Res. 104, D6, 6081-6091.
  • Katul, G.G., and W.H. Chang (1999), Principal length scales in second-order closure models for canopy turbulence, J. Appl. Meteorol. 38, 11, 1631-1643.
  • Katul, G.G., L. Mahrt, D. Poggi, and C. Sanz (2004), One-and two-equation models for canopy turbulence, Bound.-Layer Meteor. 113, 81-109.
  • Katul, G.G., A. Porporato, R. Nathan, M. Siqueira, M.B. Soons, D. Poggi, H.S. Horn, and S.A. Levin (2005), Mechanistic analytical models for long-distance seed dispersal by wind, American Naturalist. 166, 3, 368-381.
  • Katul, G.G., J.J. Finningan, D. Poggi, R. Leuning, and S.E. Belcher (2006), The influence of hilly terrain on canopy-atmosphere carbon dioxide exchange, Bound.-Layer Meteor. 118, 189-216.
  • Lefsky, M.A. (2005a), Combining LIDAR estimates of aboveground biomass and Landsat estimates of stand age for spatially extensive validation of modeled forest productivity, Remote Sensing Environ. 95, 4, 549-558.
  • Lefsky, M.A. (2005b), Geographic variability in lidar predictions of forest stand structure in the Pacific Northwest, Remote Sensing Environ. 95, 4, 532-548.
  • MacDonald, R.W. (2000), Modelling the mean velocity profile in the urban canopy layer, Bound.-Layer Meteor. 97, 25-45.
  • Martilli, A., and J.L. Santiago (2007), CFD simulation of airflow over a regular array of cubes. Part II: analysis of spatial average properties, Bound.-Layer Meteor. 122, 3, 635-654.
  • McLean, S.R., and V.I. Nikora (2006), Characteristics of turbulent unidirectional flow over rough beds: Double-averaging perspective with particular focus on sand dunes and gravel beds, Water Resour. Res. 42, 10, W10409.
  • Nathan, R., and G.G. Katul (2005), Foliage shedding in deciduous forests lifts up long-distance seed dispersal by wind, PNAS 102, 23, 8251-8256, DOI: 10.1073/pnas.0503048102
  • Nathan, R., G.G. Katul, H.S. Horn, S.M. Thomas, R. Oren, R. Avissar, S.W. Pacala, and S.A. Levin (2002), Mechanisms of long-distance dispersal of seeds by wind, Nature 418, 6896, 409-413.
  • Nepf, H.M., and E.W. Koch (1999), Vertical secondary flows in submersed plant-like arrays, Limnol. Oceanogr. 44, 4, 1072-1080.
  • Nikora, V., D. Goring, I. McEwan, and G. Griffiths (2001) Spatially averaged open-channel flow over rough bed, J. Hydraul. Eng. 127, 2, 123-133.
  • Poggi, D., and G.G. Katul (2007a), The ejection-sweep cycle over bare and forested gentle hills: a laboratory experiment, Bound.-Layer Meteor. 122, 493-515.
  • Poggi, D., and G.G. Katul (2007b), An experimental investigation of the mean momentum budget inside dense canopies on narrow gentle hilly terrain, Agricultural and Forest Meteorology 144, 1-13.
  • Poggi, D., A. Porporato, and L. Ridolfi (2003), Analysis of the small-scale structure of turbulence on smooth and rough walls, Phys. Fluids 15, 35-46.
  • Poggi, D., G.G. Katul, and J.D. Albertson (2004a), Momentum transfer and turbulent kinetic energy budgets within a dense model canopy, Bound.-Layer Meteor. 111, 589-614.
  • Poggi, D., G.G. Katul, and J.D. Albertson (2004b), A note on the contribution of dispersive fluxes to momentum transfer within canopies - Research note, Bound.-Layer Meteor. 111, 615-621.
  • Poggi, D., A. Porporato, L. Ridolfi, J.D. Andertson, and G.G. Katul (2004c), The effect of vegetation density on canopy sub-layer turbulence, Bound.-Layer Meteor. 111, 565-587.
  • Poggi, D., G.G. Katul, J.D. Albertson, and L. Ridolfi (2007), An experimental investigation of turbulent flows over a hilly surface, Phys. Fluids 19, 036601.
  • Pokrajac, D., L.J. Campbell, V. Nikora, C. Manes, and I. McEwan (2007), Quadrant analysis of persistent spatial velocity perturbations over square-bar roughness, Exp. Fluids 42, 3, 413-423.
  • Raupach, M.R., and J.J. Finnigan (1997), The influence of topography on meteorological variables and surface-atmosphere interactions, J. Hydrol. 190, 3-4, 182-213.
  • Raupach, M.R., and R.H. Shaw (1982), Averaging procedures for flow within vegetation canopies, Bound.-Layer Meteor. 22, 79-90.
  • Raupach, M.R., and A.S. Thom (1981), Turbulence in and above plant canopies, Ann. Rev. Fluid Mech. 13, 97-129.
  • Raupach, M.R., P. A. Coppin, and B. J. Legg (1986), Experiments on scalar dispersion within a model-plant canopy part I: The turbulence structure, Bound.-Layer Meteor. 35, 21-52.
  • Raupach, M.R., W.S. Weng, D.J. Carruthers, and J.C.R. Hunt (1992), Temperature and humidity field and fluxes over low hills, Quart. J. Roy. Met. Soc. 118, 504, 191-225.
  • Siqueira, M., Ch.-T. Lai, and G. Katul (2000), Estimating scalar sources, sinks, and fluxes in a forest canopy using Lagrangian, Eulerian, and hybrid inverse models, J. Geophys. Res. 105, D24, 29475-29488.
  • Soons, M.B., G.W. Heil, R. Nathan, and G.G. Katul (2004), Determinants of long-distance seed dispersal by wind in grasslands, Ecology. 85, 11, 3056-3068.
  • Wilson, J.D., J.J. Finnigan, and M.R. Raupach (1998), A first-order closure for disturbed plant-canopy flows, and its application to winds in a canopy on a ridge, Quart. J. Roy. Met. Soc. 124, 547, 705-732.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL7-0027-0013
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.