PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Analysis of turbulent flows in fixed and moving permeable media

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The ability to realistically model flows through heterogeneous domains, which contain both solid and fluid phases, can benefit the analysis and simulation of complex real-world systems. Environmental impact studies, as well as engineering equipment design, can both take advantage of reliable modelling of turbulent flow in permeable media. Turbulence models proposed for such flows depend on the order of application of volume- and time-average operators. Two methodologies, following the two orders of integration, lead to distinct governing equations for the statistical quantities. This paper reviews recently published methodologies to mathematically characterize turbulent transport in permeable media. A new concept, called double-decomposition, is here discussed and instantaneous local transport equations are reviewed for clear flow before the time and volume averaging procedures are applied to them. Equations for turbulent transport follow, including their detailed derivation and a proposed model for suitable numerical simulations. The case of a moving porous bed is also discussed and transport equations for the mean and turbulent flow fields are presented.
Słowa kluczowe
Czasopismo
Rocznik
Strony
562--583
Opis fizyczny
bibliogr. 53 poz.
Twórcy
autor
  • Departmento de Energia, Instituto Tecnológico de Aeronáutica (ITA), Sao José dos Campos, SP, Brazil, delemos@ita.br
Bibliografia
  • Antohe, B.V., and J.L. Lage (1997), A general two-equation macroscopic turbulence model for incompressible flow in porous media, Int. J. Heat Mass Transfer 40, 3013.
  • Assato, M., M.H.J. Pedras, and M.J.S. de Lemos (2005), Numerical solution of turbulent flow past a backward-facing-step with a porous insert using linear and non-linear k-? models, J. Porous Media 8, 13.
  • Bear, J. (1972), Dynamics of Fluids in Porous Media, Elsevier, New York.
  • Bear, J., and Y. Bachmat (1967), A generalized theory on hydrodynamic dispersion in porous media, IASH Symposium Artificial Recharge and Management of Aquifers, Haifa, Israel, 72, 7-16.
  • Braga, E.J., and M.J.S. de Lemos (2004), Turbulent natural convection in a porous square cavity computed with a macroscopic k-? model, Int. J. Heat Mass Transfer 47, 5635.
  • Braga, E.J., and M.J.S. de Lemos (2005), Heat transfer in enclosures having a fixed amount of solid material simulated with heterogeneous and homogeneous models, Int. J. Heat Mass Transfer 48, 23-24, 4748-4765
  • Braga, E.J., and M.J.S. de Lemos (2006a), Simulation of turbulent natural convection in a porous cylindrical annulus using a macroscopic two-equation model, Int. J. Heat Mass Transfer 49, 23-24, 4340-4351.
  • Braga, E.J., and M.J.S. de Lemos (2006b), Turbulent heat transfer in an enclosure with a horizontal porous plate in the middle, ASME. J. Heat Transfer 128, 11, 1122-1129.
  • de Lemos, M.J.S. (2005), Turbulent kinetic energy distribution across the interface between a porous medium and a clear region, Int. Comm. Heat Mass Transfer 32, 107.
  • de Lemos, M.J.S. (2006), Turbulence in Porous Media: Modeling and Applications, Elsevier, New York.
  • de Lemos, M.J.S., and E.J. Braga (2003), Modeling of turbulent natural convection in porous media, Int. Comm. Heat Mass Transfer 30, 615.
  • de Lemos, M.J.S., and M.S. Mesquita (2003), Turbulent mass transport in saturated rigid porous media, Int. Comm. Heat Mass Transfer 30, 105.
  • de Lemos, M.J.S., and M.H.J. Pedras (2001), Recent mathematical models for turbulent flow in saturated rigid porous media, ASME - J. Fluids Engineering 123, 935.
  • de Lemos, M.J.S., and R.A. Silva (2006), Turbulent flow over a layer of a highly permeable medium simulated with a diffusion-jump model for the interface, Int. J. Heat Mass Transfer 49, 3-4, 546-556.
  • de Lemos, M.J.S., and L.A. Tofaneli (2004), Modeling of double-diffusive turbulent natural convection in porous media, Int. J. Heat Mass Transfer 47, 4221.
  • Finnigan, J.J. (1985), Turbulent transport in flexible plant canopies. In: B.A. Hutchison and B.B. Hicks (eds.), The Forest-Atmosphere Interactions, Reidel Publ. Comp., Dordrecht, 443-480.
  • Getachewa, D., W.J. Minkowycz, and J.L. Lage (2000), A modified form of the k-? model for turbulent flow of an incompressible fluid in porous media, Int. J. Heat Mass Transfer 43, 2909.
  • Gobel, B., U. Henriksen, T.K. Jensen, B. Qvale, and N. Houbak (2007), The development of a computer model for a fixed bed gasifier and its use for optimization and control, Bioresource Technology 98, 10, 2043-2052.
  • Gray, W.G. (1975), A derivation of the equation for multi-phase transport, Chem. Eng. Sci. 30, 229-233.
  • Gray, W.G., and P.C.Y. Lee (1977), On the theorems for local volume averaging of multiphase system, Int. J. Multiphase Flow 3, 333.
  • Henda, R., and D.J. Falcioni (2006), Modeling of heat transfer in a moving packed bed: case of the preheater in nickel carbonyl process, J. Appl. Mechanics 73, 47-53.
  • Hsu, C.T., and P. Cheng (1990), Thermal dispersion in a porous medium, Int. J. Heat Mass Transfer 33, 1587.
  • Hu Guoxin, Xu Wei, and Liu Yaqin (2003), Heat transfer and gas flow through feed stream within horizontal pipe, Transport in Porous Media 52, 371-387.
  • Ingham, D.B., and Pop, I. (eds.), (2002), Transport Phenomena in Porous Media, Pergamon, Oxford.
  • Kuwahara, F., and A. Nakayama (1998), Numerical modeling of non-Darcy convective flow in a porous medium, Proc. 11th Int. Heat Transfer Conference, Kyongyu, Korea 4, 411-416.
  • Kuwahara, F., A. Nakayama, and H. Koyama (1996), A numerical study of thermal dispersion in porous media, ASME - J. Heat Transfer 118, 756.
  • Lage, J.L. (1998), The fundamental theory of flow through permeable media from Darcy to turbulence. In: D.B. Ingham and I. Pop (eds.), Transport Phenomena in Porous Media, Pergamon, Oxford, 1-30.
  • Lage, J.L., M.J.S. de Lemos, and D.A. Nield (2002), Modeling turbulence in porous media. In: D.B. Ingham and I. Pop (eds.), Transport Phenomena in Porous Media - II, Pergamon, Oxford, 198-230.
  • Lee, K., and J.R. Howell (1987), Forced convective and radiative transfer within a highly porous layer exposed to a turbulent external flow field, Proc. 1987 ASME-JSME Thermal Eng. Joint Conf., Honolulu, Hawaii, 2, 377-386.
  • Masuoka, T., and Y. Takatsu (1996), Turbulence model for flow through porous media, Int. J. Heat Mass Transfer 39, 2803.
  • Nakayama, A., and F. Kuwahara (1999), A macroscopic turbulence model for flow in a porous medium, ASME - J. Fluids Engineering 121, 427.
  • Nield, D.A., and A. Bejan (1999), Convection in Porous Media, Springer, New York
  • Nikora, V., I. McEwan, S. McLean, S. Coleman, D. Pokrajac and R. Walters (2007), Double averaging concept for rough-bed open-channel and overland flows: Theoretical background, J. Hydraul. Eng. ASCE 133, 8, 873-883.
  • Pedras, M.H.J., and M.J.S. de Lemos (2000), On the definition of turbulent kinetic energy for flow in porous media, Int. Comm. Heat Mass Transfer 27, 211.
  • Pedras, M.H.J., and M.J.S. de Lemos (2001), Macroscopic turbulence modeling for incompressible flow through undeformable porous media, Int. J. Heat Mass Transfer 44, 1081.
  • Pedras, M.H.J., and M.J.S. de Lemos (2003), Computation of turbulent flow in porous media using a low Reynolds k-? model and an infinite array of transversally-displaced elliptic rods, Numerical Heat Transfer Part A-Appl. 43, 6, 585.
  • Raupach, M.R., and R.H. Shaw (1982), Averaging procedures for flow within vegetation canopies, Bound.-Layer Meteor. 22, 79-90.
  • Rocamora Jr., F.D., and M.J.S. de Lemos (2000), Analysis of convective heat transfer for turbulent flow in saturated porous media, Int. Comm. Heat Mass Transfer 27, 825.
  • Saito, M.B., and M.J.S. de Lemos (2005), Interfacial heat transfer coefficient for non-equilibrium convective transport in porous media, Int. Comm. Heat Mass Transfer 32, 666.
  • Saito, M.B., and M.J.S. de Lemos (2006), A correlation for interfacial heat transfer coefficient for turbulent flow over an array of square rods, ASME - J. Heat Transfer 128, 444-452.
  • Santos, N.B., and M.J.S. de Lemos (2006), Flow and heat transfer in a parallel-plate channel with porous and solid baffles, Numerical Heat Transfer Part AAppl 49, 546-556.
  • Shimizu, J., T. Han, S. Choi, L. Kim, and H. Kim (2006), Fluidized-bed combustion characteristics of cedar pellets by using an alternative bed material, Energy & Fuels 20, 6, 2737-2742.
  • Silva, R.A., and M.J.S. de Lemos (2003a), Numerical analysis of the stress jump interface condition for laminar flow over a porous layer, Numerical Heat Transfer A 43, 603.
  • Silva, R.A., and M.J.S. de Lemos (2003b), Turbulent flow in a channel occupied by a porous layer considering the stress jump at the interface Int. J. Heat Mass Transfer 46, 5113.
  • Slattery, J.C. (1967), Flow of viscoelastic fluids through porous media, J. Amer. Inst. Chem. Eng. 13, 1066.
  • Takatsu, Y., and T. Masuoka (1998), Turbulent phenomena in flow through porous media, J. Porous Media 1, 243.
  • Vafai, K. (ed.) (2000), Handbook of Porous Media, Marcel Dekker, New York.
  • Wang, H., and E.S. Takle (1995), Boundary-layer flow and turbulence near porous obstacles, Bound.-Layer Meteor. 74, 73.
  • Whitaker, S. (1966), Equations of motion in porous media, Chem. Eng. Sci. 21, 291.
  • Whitaker, S. (1967), Diffusion and dispersion in porous media, J. Amer. Inst. Chem. Eng. 13, 420.
  • Whitaker, S. (1969), Advances in theory of fluid motion in porous media, Indust. Engng. Chem. 61, 14.
  • Whitaker, S. (1999), The Method of Volume Averaging, Kluwer Academic Publishers, Dordrecht.
  • Wilson, N.R., and R.H. Shaw (1977), A higher order closure model for canopy flow, J. Appl. Meteorol. 16, 1197-1205.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL7-0027-0003
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.