PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Phase synchronization of slips by periodical (tangential and normal) mechanical forcing in the spring-slider model

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present study, the character of slip regimes under weak external periodical (tangential and normal) mechanical forcing has been investigated in a laboratory spring-slider system. We report the experimental evidence of phase synchronization in a slip dynamics, induced by the external periodic mechanical impact. At certain conditions, we have a stick-slip effect in the spring-slider system. To de-scribe this effect, we can use rate- and state-dependent friction law. In our experiments, the slip events are distinguished by acoustic emission bursts, which are generated by slider displacement. In addition to drag, the weak variable mechanical forcing was superimposed either tangential or normal to the slip plane. With increasing external forcing one can see increasing phase synchronization of the first arrivals (onsets) of stick-slip generated acoustic pulses. The grouping of the onsets in a certain phase of the external periodic forcing is considered as a hallmark of the phase synchronization. The onsets of stick-slip pulses in the case of normal mechanical forcing are shifted relative to onsets in the case of tangential forcing.
Czasopismo
Rocznik
Strony
357--371
Opis fizyczny
Twórcy
autor
Bibliografia
  • Avila, G. (2004), Synchronization Phenomena in Light Controlled Oscillators, Free University of Brussels, Belgium.
  • Beeler, N.M., and D.A. Lockner (2003), Why earthquakes correlate weakly with the solid Earth tides: Effects of periodic stress on the rate and probability of earthquake occurrence, J. Geophys. Res. B108, 2391-2405.
  • Boettcher, M.S., and C. Marone (2004), Effects of normal stress variation on the strength and stability of creeping faults, J. Geophys. Res. 109 (B3), DOI:10.1029/2003JB002824.
  • Brace, W.E., and I.D. Byerlee (1966), Stick-slip as a mechanism for earthquakes, Science 153, 990-992.
  • Bureau, L., T. Baumberger, and C. Caroli (2000), Shear response of a frictional influence to a normal load modulation, Phys. Rev. E 62, 6810-6820.
  • Chelidze, T., and O. Lursmanashvili (2003), Electromagnetic and mechanical control of slip: laboratory experiments with slider system, Nonlinear Processes in Geophysics 20, 1-8.
  • Chelidze T., and T. Matcharashvili (2007), Complexity of seismic process, measuring and applications - A review, Tectonophysics 431, 49-61.
  • Chelidze, T., N. Varamashvili, M. Devidze, Z. Chelidze, V. Chikhladze, and T. Matcharashvili (2002), Laboratory study of electromagnetic initiation of slip, Ann. Geophys. 45, 587-599.
  • Chelidze, T., A. Gvelesiani, N. Varamashvili, M. Devidze, V. Chikchladze, Z. Chelidze, and M. Elashvili (2004), Electromagnetic initiation of slip: laboratory model, Acta Geophys. Pol. 52, 49-62.
  • Chelidze, T., T. Matcharashvili, J. Gogiashvili, O. Lursmanashvili, and M. Devidze (2005), Phase synchronization of slip in laboratory slider system, Nonlinear Processes in Geophysics 12, 1-8.
  • Chelidze, T., O. Lursmanashvili, T. Matcharashvili, and M. Devidze (2006), Triggering and synchronization of stick slip: waiting times and frequency-energy distribution, Tectonophysics 424, 139-155.
  • Dieterich, J.H. (1979), Modeling of rock friction 1. Experimental results and constitutive equations, J. Geophys. Res. 84B, 2161-2168.
  • Grasso, J.-R. (1992), Mechanics of seismic instabilities induced by the recovery of hydrocarbons, Pageoph 139, 507-534.
  • Kanamori, H., and E.E. Brodsky (2004), The physics of earthquakes, Rep. Prog. Phys. 67, 1429-1496.
  • Meerovich, L.A., and L.G. Zelichenko (1954), Impulse Technique, Sovetskoe Radio, Moscow, 544-551 (in Russian).
  • Nocolis, J.S. (1989), Dynamics of Hierarchical Systems, Mir, Moscow, 465-474 (in Russian).
  • Perfettini, H., J. Schmittbuhl, and J.R. Rice (2001), Frictional response induced by timedependent fluctuations of the normal loading, J. Geophys. Res. 106B, 13455-13472.
  • Pikovsky, A., M.G. Rosenblum, and J. Kurths (2003), Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge University Press, Cambridge.
  • Rice, J.R., and A.L. Ruina (1983), Stability of steady frictional slipping, J. Appl. Mech. 50, 343-349.
  • Rice, J.R., N. Lapusta, and K. Ranjith (2001), Rate and state dependent friction and the stability sliding between elastically deformable solids, J. Mech. Phys. Solids 49, 1865-1898.
  • Ruina, A. (1983), Slip instability and state variable friction laws, J. Geophys. Res. 88B, 10359-10370.
  • Scholz, C.H. (1998), Earthquakes and friction laws, Nature 391, 37-42.
  • Sobolev, G.A., and A.V. Ponomarev (2003), Physics of Earthquakes and Precursors, Nauka, Moscow, 270 pp. (in Russian).
  • Sobolev, G.A., A.V. Ponomarev, A.V. Koltsov, and V.B. Smirnov (1996), Simulation of trigger earthquakes in the laboratory, PAGEOPH 147, 345-355.
  • Varamashvili, N., and T. Simonishvili (2005), Calculation of stick-slip parameters at periodical normal forcing, J. Georgian Geophys. Soc., Physics Solid Earth 10A, 86-91.
  • Varamashvili, N.D., T.L. Chelidze, and O.V. Lursmanashvili (2007a), Phase synchronization of slips by periodical (tangential) mechanical forcing in the spring-slider model, J. Georgian Geophys. Soc., Physics Solid Earth 11A, 15-24.
  • Varamashvili, N.D., T.L. Chelidze, and O.V. Lursmanashvili (2007b), Phase synchronization of slips by periodical (normal) mechanical forcing in the spring-slider model, J. Georgian Geophys. Soc., Physics Solid Earth 11A, 24-34.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL7-0025-0011
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.