PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Particle simulations of dispersion using observed meandering and turbulence

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A Lagrangian stochastic particle model driven by observed winds from a net-work of 13 sonic anemometers is used to simulate the transport of contaminates due to meandering of the mean wind vector and diffusion by turbulence. The turbulence and the meandering motions are extracted from the observed velocity variances using a variable averaging window width. Such partitioning enables determination of the separate contributions from turbulence and meandering to the total dispersion. The turbulence is described by a Markov Chain Monte Carlo process based on the Langevin equation using the observed turbulence variances. The meandering motions, not the turbulence, are primarily responsible for the 1-h averaged horizontal dispersion as measured by the travel time dependence of the particle position variances. As a result, the 1-h averaged horizontal concentration patterns are often characterized by streaks and multi-modal distributions. Time series of concentration at a fixed location are highly nonstationary even when the 1-h averaged spatial distribution is close to Gaussian. The results show that meandering dominates the travel-time dependence of the horizontal dispersion under all atmospheric conditions: weak and strong winds, and unstable and stable stratification.
Słowa kluczowe
Czasopismo
Rocznik
Strony
234--256
Opis fizyczny
Twórcy
autor
autor
autor
Bibliografia
  • Acevedo, O.C., O.L.L Moraes, G.A. Degrazia, and L.E. Medeiros (2006), Intermittency and the exchange of scalars in the nocturnal surface layer, Bound.-Layer Meteor. 119, 41-55.
  • Acevedo, O.C., O.L.L. Moraes, D. Fitzjarrald, R. Sakai, and L. Mahrt (2007), Turbulent carbon exchange in very stable conditions, Bound.-Layer Meteor. 125, 49-61, DOI: 10.1007/ s10546-007-9193-6.
  • Anfossi, D., D. Oettl, G. Degrazia, and A. Goulart (2005), An analysis of sonic anemometer observations in low wind speed conditions, Bound.-Layer Meteor. 114, 179-203.
  • Anfossi, D., S. Alessandrini, S.T. Castelli, E. Ferrero, D. Oettl, and G. Degrazia (2006), Tracer dispersion simulation in low wind speed conditions with a new 2D Langevin equation system, Atmos. Environ. 40, 7234-7245.
  • Avila, R., and S.S. Raza (2005), Dispersion of particles released into a neutral planetary boundary layer using a markov chain-monte carlo model, J. Appl. Meteor. 44, 1106-1115.
  • Beljaars, A.C.M., and A.A.M. Holtslag (1991), Flux parameterization over land surfaces for atmospheric models, J. Appl. Meteor. 30, 327-341.
  • Brown, A.R., S.H. Derbyshire, and P.J. Mason (1994), Large-eddy simulation of stable atmospheric boundary layers with a revised stochastic subgrid model, Quart. J. Roy. Meteor. Soc. 120, 1485-1512.
  • Brusasca, C., G. Tinarelli, and D. Anfossi (1992), Particle model simulation of diffusion in low wind speed stable conditions, Atmos. Environ. 26, 707-723.
  • Doran, J.C., and T.W. Horst (1981), Velocity and temperature oscillations in drainage winds, J. Appl. Meteor. 20, 361-364.
  • Etling, D. (1990), On plume meandering under stable stratification, Atmos. Environ. 24A, 1979-1985.
  • Farrell, J.A., J. Murlis, X. Long, W. Li, and R.T. Carde (2002), Filament-based atmospheric dispersion model to achieve short time-scale structure of odor plumes, Environ. Fluid Mech. 2, 143-169.
  • Fritz, D., C. Nappo, D. Riggin, B. Balsley, W. Eichinger, and R. Newsom (2003), Analysis of ducted motions in the stable nocturnal boundary layer during CASES-99, J. Atmos. Sci. 60, 2450-2472.
  • Gifford, F.A. (1960), Peak to average concentration ratios according to a fluctuating plume dispersion model, Int. J. Air Pollut. 3, 253-260.
  • Hanna, S.R. (1983), Lateral turbulence intensity and plume meandering during stable conditions, J. Appl. Meteor. 20, 242-249.
  • Hanna, S.R. (1990), Lateral dispersion in light-wind stable conditions, Il Nuovo Cimento 13, 889-894.
  • Kosović, B., and J.A. Curry (2000), A large eddy simulation of quasi-steady, stably stratified boundary layer, J. Atmos. Sci. 57, 1052-1068.
  • Kristensen, L., N.O. Jensen, and E.L. Peterson (1981), Later dispersion of pollutants in a very stable atmosphere, Atmos. Environ. 15, 837-844.
  • Mahrt, L. (2007), Weak-wind mesoscale meandering in the nocturnal boundary layer, Environ. Fluid Mech. 7, 4, 331-347, DOI: 10.1007/s10652-007-9024-9.
  • Mahrt, L., E. Moore, D. Vickers, and N.O. Jensen (2001a), Dependence of turbulent and mesoscale velocity variances on scale and stability, J. Appl. Meteor. 40, 628-641.
  • Mahrt, L., D. Vickers, and R. Nakamura (2001b), Shallow drainage flows, Bound.-Layer Meteor. 101, 243-260.
  • Mylne, K.R. (1992), Concentration fluctuation measurements in a plume dispersing in a stable surface layer, Bound.-Layer Meteor. 60, 15-48.
  • Oettl, D., R.A. Almbauer, and P.J. Sturm (2001), A new method to estimate diffusion in stable, low wind conditions, J. Appl. Meteor. 40, 259-268.
  • Oettl, D., A. Goulart, C. Degrazia, and D. Anfossi (2005), A new hypothesis on meandering atmospheric flows in low wind speed conditions, Atmos. Environ. 39, 1739-1748.
  • Paulson, C.A., 1970, The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer, J. Appl. Meteor. 9, 857-861.
  • Poulos, G.S., W. Blumen, D. Fritts, J. Lundquist, J. Sun, S. Burns, C. Nappo, R. Banta, R. Newsone, J. Cuxart, E. Terradellas, B. Balsley, and M. Jensen (2002), CASES-99: A comprehensive investigation of the stable nocturnal boundary layer, Bull. Amer. Meteor. Soc. 83, 555-581.
  • Sagendorf, J.F., and C.R. Dickson (1974), Diffusion under low wind speed, inversion conditions, NOAA Tech. Memo. ERL ARL-52, 89 pp.
  • Smedman, A.S. (1988), Observations of multi-level turbulence structure in a very stable atmospheric boundary layer, Bound.-Layer Meteor. 44, 231-253.
  • Soler, M.R., C. Infante, and P. Buenestado (2002), Observations of nocturnal drainage flow in a shallow gulley, Bound.-Layer Meteor. 105, 253-273.
  • Stern, A.C., R.W. Boubel, D.B. Turner, and D.L. Fox (1984), Fundamentals of Air Pollution, (2nd ed.), Academic Press Inc., New York, 300 pp.
  • Sun, J., S.P. Burns, D.H. Lenschow, R. Banta, R. Newsom, R. Coulter, S. Frasier, T. Ince, C. Nappo, J. Cuxart, W. Blumen, X. Lee, and X-Z Hu (2002), Intermittent turbulence associated with a density current passage in the stable boundary layer, Bound.-Layer Meteor. 105, 199-219.
  • Taylor, G. (1921), Diffusion by continuous movements, Proc. London Math. Soc. 20, 196-211.
  • Tennekes, H., and J.L. Lumley (1972), A First Course in Turbulence, The MIT Press, Cambridge- Massachusetts-London, 293 pp.
  • van den Kroonenberg, A., and J. Bange (2007), Turbulent flux calculation in the polar stable boundary layer: Multiresolution flux decomposition and wavelet analysis, J. Geophys. Res. 112, D6, D06112, DOI: 10.1029/2006JD007819.
  • Venkatram, A., D. Strimaitis, and D. Dicristofaro (1984), A semiempirical model to estimate vertical dispersion of elevated releases in the stable boundary layer, Atmos. Environ. 18, 923-928.
  • Vickers, D., and L. Mahrt (2003), The cospectral gap and turbulent flux calculations, J. Atmos. Oceanic Technol. 20, 660-672.
  • Vickers, D., and L. Mahrt (2006), A solution for flux contamination by mesoscale motions with very weak turbulence, Bound.-Layer Meteor. 118, 431-447.
  • Vickers, D., and L. Mahrt (2007), Observations of the cross-wind velocity variance in the stable boundary layer, Environ. Fluid Mech. 7, 55-71.
  • Wang, L.P., and D.E. Stock (1992), Stochastic trajectory models for turbulent diffusion: monte carlo process versus markov chains, Atmos. Environ. 26, 1599-1607.
  • Weil, J.C., P.P. Sullivan, and C.H. Moeng (2004), The use of large-eddy simulations in Lagrangian particle dispersion models, J. Atmos. Sci. 61, 2877-2887.
  • Zannetti, P. (1990), Air Pollution Modeling: Theories, Computational Methods, and Available Software, Comput. Mechanics Publs., Southampton and van Nostrand Reinhold, New York, 444 pp.
  • Žagar, N., M. Žagar, J. Cedilnik, G. Gregoric, and J. Rakovec (2006), Validation of mesoscale low-level winds obtained by dynamical downscaling of ERA40 over complex terrain, Tellus 58, 445-455.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL7-0023-0026
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.