PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effects of shear in the convective boundary layer: analysis of the turbulent kinetic energy budget

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Effects of convective and mechanical turbulence at the entrainment zone are studied through the use of systematic Large-Eddy Simulation (LES) experiments. Five LES experiments with different shear characteristics in the quasisteady barotropic boundary layer were conducted by increasing the value of the constant geostrophic wind by 5 m s-1 until the geostrophic wind was equal to 20 m s-1. The main result of this sensitivity analysis is that the convective boundary layer deepens with increasing wind speed due to the enhancement of the entrainment heat flux by the presence of shear. Regarding the evolution of the turbulence kinetic energy (TKE) budget for the studied cases, the following conclusions are drawn: (i) dissipation increases with shear, (ii) the transport and pressure terms decrease with increasing shear and can become a destruction term at the entrainment zone, and (iii) the time tendency of TKE remains small in all analyzed cases. Convective and local scaling arguments are applied to parameterize the TKE budget terms. Depending on the physical properties of each TKE budget contribution, two types of scaling parameters have been identified. For the processes influenced by mixed-layer properties, boundary layer depth and convective velocity have been used as scaling variables. On the contrary, if the physical processes are restricted to the entrainment zone, the inversion layer depth, the modulus of the horizontal velocity jump and the momentum fluxes at the inversion appear to be the natural choices for scaling these processes. A good fit of the TKE budget terms is obtained with the scaling, especially for shear contribution.
Czasopismo
Rocznik
Strony
167--193
Opis fizyczny
Twórcy
autor
  • Applied Physics Department, Technical University of Catalonia, Castelldefels, Spain, david@fa.upc.edu
Bibliografia
  • Angevine, W.M., A.W. Grimsdell, A. McKeen and J.M. Warnock (1998), Entrainment results from the Flatland boundary layer experiments, J. Geophys. Res. 103, 13689-13701.
  • Artaz, M.A., and J.C. André (1980), Similarity studies of entrainment in convective mixed layers, Bound.-Layer Meteor. 19, 51-66.
  • Betts, A.K. (1974), Reply to comment on the paper "Non-precipitating cumulus convection and its parameterization", Quart. J. Roy. Meteor. Soc. 100, 469-471.
  • Betts, A.K., and J.H. Ball (1994), Budget analysis of FIFE 1987 sonde data, J. Geophys. Res. 99, 3655-3666.
  • Bretherton, C.S., M.K. MacVean, P. Bechtold, A. Chlond, W.R. Cotton, J. Cuxart, H. Cuijpers, M. Khairoutdinov, B. Kosovic, D. Lewellen, C.-H. Moeng, P. Siebesma, B. Stevens, D.E. Stevens, I. Sykes, and M.C. Wyant (1999), An intercomparison of radiatively driven entrainment and turbulence in a smoke cloud, as simulated by different numerical models, Quart. J. Roy. Meteor. Soc. 125, 391-423.
  • Christian, T.W., and R.M. Wakimoto (1989), The relationship between radar reflectivities and clouds associated with horizontal roll convection on 8 August 1982, Mon. Weath. Rev. 117, 1530-1544.
  • Conzemius, R., and E. Fedorovich (2006a), Dynamics of sheared convective boundary layer entrainment. Part I: Methodological background and large-eddy simulations, J. Atmos. Sci. 63, 1151-1178.
  • Conzemius, R., and E. Fedorovich (2006b), Dynamics of sheared convective boundary layer entrainment. Part II: Evaluation of bulk model predictions of entrainment flux, J. Atmos. Sci. 63, 1179-1199.
  • Conzemius, R., and E. Fedorovich (2007), Bulk models of the sheared convective boundary layer: Evaluation through large eddy simulations, J. Atmos. Sci. 64, 786-807.
  • Cuijpers, J.W.M., and P.G. Duynkerke (1993), Large eddy simulation of trade wind cumulus clouds, J. Atmos. Sci. 50, 3894-3908.
  • Cuijpers, J.W.M., and A.A.M. Holtslag (1998), Impact of skewness and nonlocal effect on scalar and buoyancy fluxes in convective boundary layers, J. Atmos. Sci. 55, 151-162.
  • Culf, A.D. (1992), An application of simple models to Sahelian convective boundary-layer growth, Bound.-Layer Meteor. 58, 1-18.
  • Deardorff, J.W., and G.E. Willis (1982), Dependence of mixed-layer entrainment on shear stress and velocity jump, J. Fluid. Mech. 115, 123-140.
  • Deardorff, J.W., G.E. Willis, and B.H. Stochton (1980), Laboratory studies of the entrainment zone of a convectively mixed layer, J. Fluid. Mech. 100, 41-64.
  • Driedonks, A.G.M. (1982), Models and observations of the growth of the atmospheric boundary layer, Bound.-Layer Meteor. 23, 283-306.
  • Driedonks, A.G.M., and H. Tennekes (1984), Entrainment effects in the well-mixed atmospheric boundary layer, Bound.-Layer Meteor. 30, 75-105.
  • Dubosclard, G. (1980), A comparison between observed and predicted values for the entrainment coefficient in the planetary boundary layer, Bound.-Layer Meteor. 18, 473-483.
  • Fedorovich, E. (1995), Modeling the atmospheric convective boundary layer within a zeroorder jump approach: An extended theoretical framework, J. Appl. Meteor. 34, 1916-1928.
  • Fedorovich, E., F.T.M. Nieuwstadt, and R. Kaiser (2001), Numerical and laboratory study of a horizontally evolving convective boundary layer. Part II: Effects of elevated wind shear and surface roughness, J. Atmos. Sci. 58, 546-560.
  • Fedorovich, E., R. Conzemius, and D. Mironov (2004a), Convective entrainment into a shearfree, linearly stratified atmosphere: Bulk models reevaluated through large eddy simulations, J. Atmos. Sci. 61, 281-295.
  • Fedorovich, E., R. Conzemius, I. Esau, F.K. Chow, D. Lewellen, C.-H. Moeng, P. Sullivan, D. Pino, and J. Vila-Guerau de Arellano (2004b), Numerical models of entrainment into sheared convective boundary layers evaluated through large eddy simulations, 16th Symp. on Boundary Layer and Turbulence, Portland, ME, Amer. Meteor. Soc., CD-ROM, P5.6.
  • Fernando, H.J.S. (1991), Turbulent mixing in stratified fluids, Annu. Rev. Fluid. Mech. 23, 455-493.
  • Flamant, P., J. Pelon, B. Brashers, and R.A. Brown (1999), Evidence of a mixed-layer dynamics contribution to the entrainment process, Bound.-Layer Meteor. 93, 47-73.
  • Garratt, J.R. (1992), The Atmospheric Boundary Layer, Cambridge University Press, Cambridge, 316 pp.
  • Hägeli, P., D.G. Steyn, and K.B. Strawbridge (2000), Spatial and temporal variability of mixed-layer depth and entrainment zone thickness, Bound.-Layer Meteor. 97, 47-71.
  • Hunt, J.C.R., and P.A. Durbin (1999), Perturbed vortical layers and shear sheltering, Fluid Dyn. Res. 24, 375-404.
  • Khanna, S., and J.G. Brasseur (1998), Three dimensional buoyancy- and shear-induced local structure of the atmospheric boundary layer, J. Atmos. Sci. 55, 710-743.
  • Kim, S.-W., S.-U. Park, and C.-H. Moeng (2003), Entrainment processes in the convective boundary layer with varying wind shear, Bound.-Layer Meteor. 108, 221-245.
  • Kim, S.-W., S.-U. Park, D. Pino and J. Vila-Guerau de Arellano (2006), Entrainment parameterization in a sheared convective boundary layer by using a first-order jump model, Bound.-Layer Meteor. 120, 455-475.
  • Kraus, H., and E. Schaller (1978), A note on the closure in Lily-type inversion models, Tellus 30, 284-288.
  • LeMone, M.A. (1973), The structure and dynamics of horizontal roll vortices in the planetary boundary layer, J. Atmos. Sci. 30, 1077-1091.
  • Lenschow, D.H. (1970), Airplane measurements of planetary boundary layer structure, J. Appl. Meteor. 9, 874-884.
  • Lenschow, D.H. (1974), Model of the height variation of the turbulence kinetic energy budget in the unstable planetary boundary layer, J. Atmos. Sci. 31, 465-474.
  • Lilly, D.K. (1968), Models of cloud-topped mixed layer under a strong inversion, Quart. J. Roy. Meteor. Soc. 94, 292-309.
  • Mahrt, L., and D.H. Lenschow (1976), Growth dynamics of the convective mixed layer, J. Atmos. Sci. 33, 41-51.
  • Manins, P.C., and J.S. Turner (1978), The relation between flux ratio and the energy ratio in convectively mixed layers, Quart. J. Roy. Meteor. Soc. 104, 39-44.
  • Moeng, C.-H., and P.P. Sullivan (1994), A comparison of shear- and buoyancy-driven planetary boundary layer flows, J. Atmos. Sci. 51, 999-1022.
  • Pino, D., J. Vila-Guerau de Arellano, and P.G. Duynkerke (2003), The contribution of shear to the evolution of a convective boundary layer, J. Atmos. Sci. 60, 1913-1926.
  • Pino, D., J. Vila-Guerau de Arellano, and S.-W. Kim (2006), Representing sheared convective boundary layer by zeroth- and first-order-jump mixed layer models: Large-eddy simulation verification, J. Appl. Meteor. Clim. 45, 1224-1243.
  • Randall, D.A. (1984), Buoyant production and consumption of turbulent kinetic energy in cloud-topped mixed layers, J. Atmos. Sci. 41, 402-413.
  • Sorbjan, Z. (1996), Effects caused by varying the strength of the capping inversion based on a large eddy simulation model of the shear-free convective boundary layer, J. Atmos. Sci. 53, 2015-2024.
  • Sorbjan, Z. (2004), Large-eddy simulations of the baroclinic mixed layer, Bound.-Layer Meteor. 112, 57-80.
  • Sorbjan, Z. (2005), Statistics of scalar fields in the atmospheric boundary layer based on Largeeddy simulations. Part 1: Free convection, Bound.-Layer Meteor. 116, 467-486.
  • Sorbjan, Z. (2006), Statistics of scalar fields in the atmospheric boundary layer based on Largeeddy simulations. Part II: Forced convection, Bound.-Layer Meteor. 119, 57-79.
  • Stage, S., and J. Bussinger (1981), A model for entrainment into a cloud-topped marine boundary layer. Part II: Discussion of model behaviour and comparison with other models, J. Atmos. Sci. 38, 2230-2242.
  • Stull, R.B. (1976a), The energetics of entrainment across a density interface, J. Atmos. Sci. 33, 1260-1267.
  • Stull, R.B. (1976b), Mixed-layer depth model based on turbulent energetics, J. Atmos. Sci. 33, 1268-1278.
  • Stull, R.B. (1988), An Introduction to Boundary Layer Meteorology, Kluwer Academic Press, Dordrecht, 670 pp.
  • Sullivan, P.P., C.-H. Moeng, B. Stevens, D. Lenschow, and S.D. Mayor (1998), Structure of the entrainment zone capping the convective atmospheric boundary layer, J. Atmos. Sci. 55, 3042-3064.
  • Sun, J., and Y. Wang (2007), Effect of the entrainment flux ratio on the relationship between entrainment rate and convective Richardson number, Bound.-Layer Meteor., DOI: 10.1007/s10546-007-9231-4.
  • Sykes, R.I., and D.S. Henn (1989), Large-eddy simulation of turbulent sheared convection, J. Atmos. Sci. 46, 1106-1118.
  • Tennekes, H. (1973), A model for the dynamics of the inversion above a convective boundary layer, J. Atmos. Sci. 30, 558-567.
  • Tennekes, H. (1975), Reply to Zilitinkevich, J. Atmos. Sci. 32, 992-995.
  • Tennekes, H., and A.G.M. Driedonks (1981), Basic entrainment equations for the atmospheric boundary layer, Bound.-Layer Meteor. 20, 515-531.
  • Tennekes, H., and J.L. Lumley (1972), A First Course in Turbulence, MIT Press, Cambridge, MA, 313 pp.
  • van Zanten, M.C., P.G. Duynkerke, and J.W.M. Cuijpers (1999), Entrainment parameterization in convective boundary layers, J. Atmos. Sci. 56, 813-828.
  • Zeman, O., and H. Tennekes (1977), Parameterization of the turbulent energy budget at the top of the daytime atmospheric boundary layer, J. Atmos. Sci. 34, 111-123.
  • Zilitinkevich, S.S. (1975), Comments on "A model for the dynamics of the inversion above a convective boundary layer", J. Atmos. Sci. 32, 991-992.
  • Zilitinkevich, S.S. (1991), Turbulent Penetrative Convection, Avebury Technical, Aldershot, 180 pp.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL7-0023-0023
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.