PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Effects of wind shear on the atmospheric convective boundary layer structure and evolution

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article reviews past accomplishments and recent advances in conceptual understanding, numerical simulation, and physical interpretation of the wind shear phenomena in the atmospheric convective boundary layer.
Słowa kluczowe
Czasopismo
Rocznik
Strony
114--141
Opis fizyczny
Twórcy
autor
Bibliografia
  • Angevine, W.M. (1999), Entrainment results including advection and case studies from the Flatland boundary layer experiments, J. Geophys. Res. 104, 30,947-30,963.
  • Angevine, W.M., H.K. Baltink, and F.C. Bosveld (2001), Observations of the morning transition of the convective boundary layer, Bound.-Layer Meteor. 101, 209-227.
  • Arya, S.P.S., and J.C. Wyngaard (1975), Effect of baroclinicity on wind profiles and the geostrophic drag law for the convective planetary boundary layer, J. Atmos. Sci. 32, 767-778.
  • Barr, A.G., and G.S. Strong (1996), Estimating regional surface heat and moisture fluxes above prairie cropland from surface and upper air measurements, J. Atmos. Sci. 35, 1716-1735.
  • Batchvarova, E., and S.-E. Gryning (1991), Applied model for the growth of the daytime mixed layer, Bound.-Layer Meteor. 56, 261-274.
  • Batchvarova, E., and S.-E. Gryning (1994), An applied model for the height of the daytime mixed layer and the entrainment zone, Bound.-Layer Meteor. 71, 311-323.
  • Betts, A.K. (1974), Reply to comment on the paper "Non-precipitating Cumulus Convection and its Parameterization", Quart. J. Roy. Meteorol. Soc. 100, 469-471.
  • Betts, A.K., and J.H. Ball (1994), Budget analysis of FIFE 1987 sonde data, J. Geophys. Res. 99, 3655-3666.
  • Betts, A.K., and A.G. Barr (1996), First International Satellite Land Surface Climatology Field Experiment 1987 sonde budget revisited, J. Geophys. Res. 101, 23285-23288.
  • Betts, A.K., R.L. Desjardins, and J.I. MacPherson (1992), Budget analysis of the boundary layer grid flights during FIFE 1987, J. Geophys. Res. 97, 18533-18546.
  • Boers, R., E.W. Eloranta, and R.L. Coulter (1984), Lidar observations of mixed layer dynamics: tests of parameterized entrainment models of mixed layer growth rate, J. Climate Appl. Meteor. 23, 247-266.
  • Brost, R.A., D.H. Lenschow, and J.C. Wyngaard (1982a), Marine stratocumulus layers. Part I: Mean conditions, J. Atmos. Sci. 39, 800-817.
  • Brost, R.A., D.H. Lenschow, and J.C. Wyngaard (1982b), Marine stratocumulus layers. Part II: Turbulence budgets, J. Atmos. Sci. 39, 818-836.
  • Brown, A.R. (1996), Large-eddy simulation and parameterisation of the baroclinic boundarylayer, Quart. J. Roy. Meteor. Soc. 122, 1779-1798.
  • Caughey, and S.G. Palmer (1979), Some aspects of turbulence structure through the depth of the convective boundary layer, Quart. J. Roy. Meteor. Soc. 105, 811-827.
  • Chou, S.-H., D. Atlas, and E.-N. Yeh (1986), Turbulence in a convective marine atmospheric boundary layer, J. Atmos. Sci. 43, 547-564.
  • Conzemius, R.J., and E. Fedorovich (2006a), Dynamics of sheared convective boundary layer entrainment. Part I: Methodological background and large eddy simulations, J. Atmos. Sci. 63, 1151-1178.
  • Conzemius, R.J., and E. Fedorovich (2006b), Dynamics of sheared convective boundary layer entrainment. Part II: Evaluation of bulk model predictions of entrainment flux, J. Atmos. Sci. 63, 1179-1199.
  • Conzemius, R., and E. Fedorovich (2007), Bulk models of the sheared convective boundary layer: evaluation through large eddy simulations, J. Atmos. Sci. 64, 786-807.
  • Cuijpers, J.W.M., and P.G. Duynkerke (1993), Large eddy simulation of trade wind cumulus clouds, J. Atmos. Sci. 50, 3894-3908.
  • Cuijpers, J.W.M., and A.A.M. Holtslag (1998), Impact of skewness and nonlocal effects on scalar and buoyancy fluxes in convective boundary layers, J. Atmos. Sci. 55, 151-162.
  • Davis, K.J., D.H. Lenschow, S.P. Oncley, C. Kiemle, G. Ehret, A. Giez, and J. Mann (1997), Role of entrainment in surface-atmosphere interactions over the boreal forest, J. Geophys. Res. 102, 29219-29230.
  • Deardorff, J.W. (1970a), Preliminary results from numerical integration of the unstable boundary layer, J. Atmos. Sci. 27, 1209-1211.
  • Deardorff, J.W. (1970b), Convective velocity and temperature scales for the unstable planetary boundary layer and for Raleigh convection, J. Atmos. Sci. 27, 1211-1213.
  • Deardorff, J.W. (1972), Numerical investigation of neutral and unstable planetary boundary layers, J. Atmos. Sci. 29, 91-115.
  • Deardorff, J.W. (1979), Prediction of convective mixed-layer entrainment for realistic capping inversion structure, J. Atmos. Sci. 36, 424-436.
  • Deardorff, J.W., G.E. Willis, and D.K. Lilly (1969), Laboratory investigation of nonsteady penetrative convection, J. Fluid Mech. 35, 7-31.
  • Driedonks, A.G.M. (1982), Models and observations of the growth of the atmospheric boundary layer, Bound.-Layer Meteor. 23, 283-306.
  • Esau, I. (2004), Simulation of Ekman boundary layers by large eddy model with dynamic mixed subfilter closure, J. Env. Fluid Mech. 4, 273-303.
  • Fedorovich, E. (1995), Modeling the atmospheric convective boundary layer within a zero-order jump approach: an extended theoretical framework, J. Appl. Meteor. 34, 1916-1928.
  • Fedorovich, E. (1998), Bulk models of the atmospheric convective boundary layer. In: E.J. Plate et al. (eds.), Buoyant Convection in Geophysical Flows, Kluwer Academic Publishers, Dordrecht, 265-290.
  • Fedorovich, E., and R. Kaiser (1998), Wind tunnel model study of turbulence regime in the atmospheric convective boundary layer. In: E.J. Plate et al. (eds.), Buoyant Convection in Geophysical Flows, Kluwer Academic Publishers, Dordrecht, 327-370.
  • Fedorovich, E., and D.V. Mironov (1995), A model for a shear-free convective boundary layer with parameterized capping inversion structure, J. Atmos. Sci. 52, 83-95.
  • Fedorovich, E., and J. Thäter (2001), Vertical transport of heat and momentum across a sheared density interface at the top of a horizontally evolving convective boundary layer, J. Turbulence 2, 7, 1-17, DOI: 10.1088/1468-5248/2/1/007.
  • Fedorovich, E., R. Kaiser, M. Rau, and E. Plate (1996), Wind tunnel study of turbulent flow structure in the convective boundary layer capped by a temperature inversion, J. Atmos. Sci. 53, 1273-1289.
  • Fedorovich, E., F.T M. Nieuwstadt, and R. Kaiser (2001a), Numerical and laboratory study of horizontally evolving convective boundary layer. Part I: transition regimes and development of the mixed layer, J. Atmos. Sci. 58, 70-86.
  • Fedorovich, E., F.T.M. Nieuwstadt, and R. Kaiser (2001b), Numerical and laboratory study of horizontally evolving convective boundary layer. Part II: effects of elevated wind shear and surface roughness, J. Atmos. Sci. 58, 546-560.
  • Fedorovich, E., R. Conzemius, I. Esau, F. Katapodes-Chow, D. Lewellen, C.-H. Moeng, P. Sullivan, D. Pino, and J.V.-G. de Arellano (2004a), Entrainment into sheared convective boundary layers as predicted by different large eddy simulation codes. In: Preprints, 16th Symp. on Boundary Layers and Turbulence, 9-13 August, Amer. Meteor. Soc. Portland, ME, CD-ROM, P4.7.
  • Fedorovich, E., R. Conzemius, and D. Mironov (2004b), Convective entrainment into a shearfree linearly stratified atmosphere: bulk models re-evaluated through large eddy simulations, J. Atmos. Sci. 61, 281-295.
  • Flamant, C., J. Pelon, P.H. Flamant, and P. Durand (1997), Lidar determination of the entrainment zone thickness at the top of the unstable marine atmospheric boundary layer, Bound.-Layer Meteor. 83, 247-284.
  • Garratt, J.R., and J.C. Wyngaard (1982), Winds in the atmospheric convective boundary layer - prediction and observation, J. Atmos. Sci. 39, 1307-1316.
  • Grossman, R.L. (1992), Convective boundary layer budgets of moisture and sensible heat over an unstressed prairie, J. Geophys. Res. 97, 18425-18438.
  • Holtslag A.A.M, and P.G. Duynkerke, eds., (1998), Clear and Cloudy Boundary Layers, Royal Netherlands Academy of Arts and Sciences, Amsterdam, 372 pp.
  • Holtslag, A.A.M., and F.T.M. Nieuwstadt (1986), Scaling the atmospheric boundary layer, Bound.-Layer Meteor. 36, 201-209.
  • Hoxit, L.R. (1974), Planetary boundary layer winds in baroclinic conditions, J. Atmos. Sci. 31, 1003-1020.
  • Kaimal, J.C., J.C. Wyngaard, D.A. Haugen, O.R. Coté, Y. Izumi, S.J. Caughey, and C.J. Readings (1976), Turbulence structure in a convective boundary layer, J. Atmos. Sci. 33, 2152-2169.
  • Kaiser, R., and E. Fedorovich (1998), Turbulence spectra and dissipation rates in a wind tunnel model of the atmospheric convective boundary layer, J. Atmos. Sci. 55, 580-594.
  • Khanna, S., and J.G. Brasseur (1998), Three-dimensional buoyancy and shear-induced local structure of the atmospheric boundary layer, J. Atmos. Sci. 55, 710-743.
  • Kim, S.-W., and S.-U. Park (2003), Coherent structures near the surface in a strongly sheared convective boundary layer generalized by large-eddy simulation, Bound.-Layer Meteor. 106, 35-60.
  • Kim, S.-W., S.-U. Park, and C.-H. Moeng (2003), Entrainment processes in the convective boundary layer with varying wind shear, Bound.-Layer Meteor. 108, 221-245.
  • Kim, S.-W., S.-U. Park, D. Pino, and J.V.-G. de Arellano (2006), Entrainment parameterization in a sheared convective boundary layer by using a first-order jump model, Bound.-Layer Meteor. 120, 455-475.
  • Lemone, M.A. (1973), The structure and dynamics of horizontal roll vortices in the planetary boundary layer, J. Atmos. Sci. 30, 1077-1091.
  • Lemone, M.A., M. Zhou, C.-H. Moeng, D.H. Lenschow, L.J. Miller, and R.L. Grossman (1999), An observational study of wind profiles in the baroclinic convective mixed layer, Bound.-Layer Meteor. 90, 47-82.
  • Lenschow, D.H. (1970), Airplane measurements of planetary boundary layer structure, J. Appl. Meteor. 9, 874-884.
  • Lenschow, D.H. (1974), Model of the height variation of the turbulence kinetic energy budget in the unstable planetary boundary layer, J. Atmos. Sci. 31, 465-474.
  • Lenschow, D.H., J.C. Wyngaard, and W.T. Pennell (1980), Mean-field and second-moment budgets in a baroclinic, convective boundary layer, J. Atmos. Sci. 37, 1313-1326.
  • Lewellen D.C., and W.S. Lewellen (1998), Large-eddy boundary layer entrainment, J. Atmos. Sci. 55, 2645-2665.
  • Lewellen, D.C., and W.S. Lewellen (2000), Boundary layer entrainment for different capping conditions. In: Proc. 14th Symp. on Boundary Layers and Turbulence, Amer. Meteor. Soc. Aspen, CO, 80-83.
  • Lilly, D.K. (1968), Models of cloud-topped mixed layers under a strong inversion, Quart. J. Roy. Meteor. Soc. 94, 292-309.
  • Mahrt, L., and D.H. Lenschow (1976), Growth dynamics of the convectively mixed layer, J. Atmos. Sci. 33, 41-51.
  • Margulis, S.A., and D. Entekhabi (2004), Boundary-layer entrainment estimation through assimilation of radiosonde and micrometeorological data into a mixed layer model, Bound.- Layer Meteor. 110, 405-433.
  • Moeng, C.-H. (1984), A large-eddy simulation for the study of planetary boundary layer turbulence, J. Atmos. Sci. 41, 2052-2062.
  • Moeng, C.-H., and P.P. Sullivan (1994), A comparison of shear- and buoyancy-driven planetary boundary layer flows, J. Atmos. Sci. 51, 999-1022.
  • Otte, M.J., and J.C. Wyngaard (2001), Stably stratified interfacial-layer turbulence from large eddy simulation, J. Atmos. Sci. 58, 3424-3442.
  • Pennel, W.T., and M.A. Lemone (1974), An experimental study of turbulence in the fair-weather trade wind boundary layer. J. Atmos. Sci. 31, 1308-1323.
  • Pino, D., J.V.-G. de Arellano, and P.J. Duynkerke (2003), The contribution of shear to the evolution of a convective boundary layer, J. Atmos. Sci. 60, 1913-1926.
  • Pino, D., J.V.-G. de Arellano, and S.-W. Kim (2006), Representing sheared convective boundary layer by zeroth- and first-order-jump mixed-layer models: large-eddy simulation verification, J. Appl. Meteor. Climatol. 45, 1224-1243.
  • Pope, S.B. (2000), Turbulent Flows, Cambridge University Press, Cambridge, 771 pp.
  • Price, J.F., Mooers, C.N.K., and J.C. Van Leer (1978), Observation and simulation of storminduced mixed layer deepening, J. Phys. Oceanogr. 8, 582-599.
  • Randall D.A., and W.H. Schubert (2004), Dreams of a stratocumulus sleeper. In: E. Fedorovich et al. (eds.), Atmospheric Turbulence and Mesoscale Meteorology, Cambridge University Press, Cambridge, 71-94.
  • Schneider, J.M., and D.K. Lilly (1999), An observational and numerical study of a sheared, convective boundary layer. Part I: Phoenix II observations, statistical description, and visualization, J. Atmos. Sci. 56, 3099-3078.
  • Sorbjan, Z. (2004), Large-eddy simulation of the baroclinic mixed layer, Bound.-Layer Meteor. 112, 57-80.
  • Stull, R.B. (1976a), The energetics of entrainment across a density interface, J. Atmos. Sci. 33, 1260-1267.
  • Stull, R.B. (1976b), Internal gravity waves generated by penetrative convection, J. Atmos. Sci. 33, 1279-1286.
  • Stull, R.B. (1976c), Mixed-layer depth model based on turbulent energetics, J. Atmos. Sci. 33, 1268-1278.
  • Stull, R.B. (1988), An Introduction to Boundary Layer Meteorology, Kluwer Academic Publishers, Dordrecht, 670 pp.
  • Sullivan, P., C.-H. Moeng, B. Stevens, D.H. Lenschow, and S.D. Mayor (1998), Structure of the entrainment zone capping the convective atmospheric boundary layer, J. Atmos. Sci. 55, 3042-3064.
  • Sykes, R.I., and D.S. Henn (1989), Large-eddy simulation of turbulent sheared convection, J. Atmos. Sci. 46, 1106-1118.
  • Tennekes, H., and A.G.M. Driedonks (1981), Basic entrainment equations for the atmospheric boundary layer, Bound.-Layer Meteor. 20, 515-531.
  • Xue, M., K.K. Droegemeier, and V. Wong (2000), The advanced regional prediction system (ARPS) - a multi-scale nonhydrostatic atmospheric simulation and prediction model, Part I: Model dynamics and verification, Meteorol. Atmos. Phys. 75, 161-193.
  • Xue, M., K.K. Droegemeier, V. Wong, A. Shapiro, K. Brewster, F. Carr, D. Weber, Y. Liu, and D. Wang (2001), The advanced regional prediction system (ARPS) - a multi-scale nonhydrostatic atmospheric simulation and prediction model. Part II: Model physics and applications, Meteorol. Atmos. Phys. 76, 143-65.
  • Zeman, O., and H. Tennekes (1977), Parameterization of the turbulent energy budget at the top of the daytime atmospheric boundary layer, J. Atmos. Sci. 34, 111-123.
  • Zilitinkevich, S.S. (1991), Turbulent Penetrative Convection, Avebury Technical, Aldershot, 179 pp.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL7-0023-0021
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.