PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Stable-boundary-layer regimes from the perspective of the low-level jet

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper reviews results from two field studies of the nocturnal stable atmospheric boundary layer (SBL) over the Great Plains of the United States. Data from a scanning remote-sensing system, a High-Resolution Doppler Lidar (HRDL), provided measurements of mean and turbulent wind components at high spatial and temporal resolution through the lowest 500-1000 m of the atmosphere. This data set has allowed the characteristics of the low-level jet (LLJ) maximum (speed, height, direction) to be documented through entire nights. LLJs form after sunset and pro-duce strong shear in the layer below the LLJ maximum or nose, which is a source of turbulence and mixing in the SBL. Simultaneous HRDL measurements of turbulence quantities related to turbulence kinetic energy (TKE) has allowed the turbulence in the subjet layer to be related to LLJ properties. Turbulence structure was found to be a function of the bulk stability of the subjet layer. For the strong-LLJ (> 15 m s-1), weakly stable cases the strength of the turbulence is proportional to the strength of the LLJ. For these cases with nearly continuous turbulence in the subjet layer, low-level jet scaling, in which lengths are scaled by the LLJ height and velocity variables are scaled by the LLJ speed, was found to be appropriate. For the weak-wind (< 5 m s-1 in the lowest 200 m), very stable boundary layer (vSBL), the boundary layer was found to be very shallow (sometimes < 10 m deep), and turbulent fluxes between the earth's surface and the atmosphere were found to be essentially shut down. For more intermediate wind speeds and stabilities, the SBL shows varying degrees of intermittency due to various mechanisms, including shear-instability and other gravity waves, density currents, and other mesoscale disturbances.
Czasopismo
Rocznik
Strony
58--87
Opis fizyczny
Twórcy
autor
Bibliografia
  • Andreas, E.L, K.J. Claffey, and A.P. Makshtas (2000), Low-level atmospheric jets and inversions over the western Weddell Sea, Bound.-Layer Meteor. 97, 459-486.
  • Balsley, B.B., R.G. Frehlich, M.L. Jensen, and Y. Meillier (2006), High-resolution in-situ profiling through the stable boundary layer: Examination of the SBL top in terms of minimum shear, maximum stratification, and turbulence decrease, J. Atmos. Sci. 63, 1291-1307.
  • Banta, R.M., C.J. Senff, A.B. White, M. Trainer, R.T. McNider, R.J. Valente, S.D. Mayor, R.J. Alvarez, R.M. Hardesty, D.D. Parish, and F.C. Fehsenfeld (1998), Daytime buildup and nighttime transport of urban ozone in the boundary layer during a stagnation episode, J. Geophys. Res. 103, 22,519-22,544.
  • Banta, R.M., R.K. Newsom, J.K. Lundquist, Y.L. Pichugina, R.L. Coulter, and L. Mahrt (2002), Nocturnal low-level jet characteristics over Kansas during CASES-99, Bound.-Layer Meteor. 105, 221-252.
  • Banta, R.M., Y.L. Pichugina, and R.K. Newsom (2003), Relationship between low-level jet properties and turbulence kinetic energy in the nocturnal stable boundary layer, J. Atmos. Sci. 60, 2549-2555.
  • Banta, R.M., N.D. Kelley, and Y.L. Pichugina (2004), Low-level jet properties and turbulence below the jet during the Lamar Low-Level-Jet Project, 16th Symposium on Boundary Layers and Turbulence, Portland ME, Paper 4.10, 4 pp. (preprints)
  • Banta, R.M., Y.L. Pichugina, and W.A. Brewer (2006), Turbulent velocity-variance profiles in the stable boundary layer generated by a nocturnal low-level jet, J. Atmos. Sci. 63, 2700-2719.
  • Banta, R.M., L. Mahrt, D. Vickers, J. Sun, B. Balsley, Y. Pichugina, and E. Williams (2007), The very stable boundary layer on nights with weak low-level jets, J. Atmos. Sci. 64 (in press).
  • Beyrich, F. (1997), Mixing height estimation from sodar data - A critical discussion, Atmos. Environ. 31, 3941-3953.
  • Blackadar, A.K. (1957), Boundary layer wind maxima and their significance for the growth of nocturnal inversions, Bull. Amer. Meteor. Soc. 38, 283-290.
  • Blumen, W., R.M. Banta, S.P. Burns, D.C. Fritts, R. Newsom, G.S. Poulos, and J. Sun (2001), Turbulence statistics of a Kelvin-Helmholtz billow event observed in the nighttime boundary layer during the CASES-99 field program, Dynamics of Atmos. and Oceans 34, 189-204.
  • Bonner, W.D. (1968), Climatology of the low level jet, Mon. Wea. Rev. 96, 833-850.
  • Brost, R.A., and J.C. Wyngaard (1978), A model study of the stably stratified planetary boundary layer, J. Atmos. Sci. 35, 1427-1440.
  • Brown, S.S., W.P. Dubé, H.D. Osthoff, D.E. Wolfe, W.M. Angevine, and A.R. Ravishankara (2007), High-resolution vertical distributions of NO3 and N2O5 through the nocturnal boundary layer, Atmos. Chem. Phys. 7, 139-149.
  • Browning, K.A., and R. Wexler (1968), The determination of kinematic properties of a wind field using Doppler radar, J. Appl. Meteor. 7, 105-113.
  • Caughey, S.J., J.C. Wyngaard, and J.C. Kaimal (1979), Turbulence in the evolving stable boundary layer, J. Atmos. Sci. 36, 1041-1052.
  • Drobinski, P., P. Carlotti, R.K. Newsom, R.M. Banta, R.C. Foster, and J.-L. Redelsperger (2004), The structure of the near-neutral atmospheric surface layer, J. Atmos. Sci. 61, 699-714.
  • Drobinski, P., P. Carlotti, J.-L. Redelsperger, R.M. Banta, V. Masson, and R.K. Newsom (2007), Numerical and experimental investigation of the neutral atmospheric surface layer, J. Atmos. Sci. 64, 137-156.
  • Emeis, S., M. Harris, and R.M. Banta (2007), Boundary-layer anemometry by optical remote sensing for wind energy applications, Meteor. Zeitschr. 16, 337-347.
  • Fritts, D.C., C. Nappo, C.M. Riggin, B.B. Balsley, W.E. Eichingre, and R.K. Newsom (2003), Analysis of ducted motions in the stable nocturnal boundary layer during CASES-99, J. Atmos. Sci. 60, 2450-2472.
  • Grachev, A., C.W. Fairall, P.O.G. Persson, E.L. Andreas, and P.S. Guest (2005), Stable boundary layer scaling regimes: The SHEBA data, Bound.-Layer Meteor. 116, 201-235.
  • Grund, C.J., R.M. Banta, J.L. George, J.N. Howell, M.J. Post, R.A. Richter, and A.M. Weickmann (2001), High-resolution Doppler lidar for boundary-layer and cloud research, J. Atmos. Ocean. Technol. 18, 376-393.
  • Ha, K.-J., and L. Mahrt (2001), Simple inclusion of z-less turbulence within and above the modelled nocturnal boundary layer, Mon. Wea. Rev. 129, 2136-2143.
  • Hanna, S.R. (1969), The thickness of the planetary boundary layer, Atmos. Environ. 3, 519-536.
  • Hoecker, W.H. (1963), Three southerly low-level jet systems delineated by the Weather Bureau special pibal network of 1961, Mon. Wea. Rev. 91, 573-582.
  • Holtslag, A.A.M., and F.T.M. Nieuwstadt (1986), Scaling the atmospheric boundary layer. Bound.-Layer Meteor. 36, 201-209.
  • Kelley, N.D., M. Shirazi, D. Jager, S. Wilde, J. Adams, M. Buhl, P. Sullivan, and E. Patton (2004), Lamar Low-Level Jet Project Interim Report. NREL/TP-500-34593. Golden, CO, National Renewable Energy Laboratory.
  • Lundquist, J.K. (2003), Intermittent and elliptical inertial oscillations in the atmospheric boundary layer, J. Atmos. Sci. 60, 2661-2673.
  • Mahrt, L. (1981), Modelling the depth of the stable boundary layer, Bound.-Layer Meteor. 21, 3-19.
  • Mahrt, L. (1998), Stratified atmospheric boundary layers and breakdown of models, J. Theor. Comp. Fluid Dyn. 11, 263-280.
  • Mahrt, L. (1999), Stratified atmospheric boundary layers, Bound.-Layer Meteor. 90, 375-396.
  • Mahrt, L., and D. Vickers (2002), Contrasting vertical structures of nocturnal boundary layers, Bound.-Layer Meteor. 105, 351-363.
  • Mahrt, L., and D. Vickers (2006), Extremely weak mixing in stable conditions, Bound.-Layer Meteor. 119, 19-39.
  • Mahrt, L., R.C. Heald, D.H. Lenschow, B.B. Stankov, and I. Troen (1979), An observational study of the structure of the nocturnal boundary layer, Bound.-Layer Meteor. 17, 247-264.
  • Mahrt, L., J. Sun, W. Blumen, T. Delaney, and S. Oncley (1998), Nocturnal boundary layer regimes, Bound.-Layer Meteor. 88, 255-278.
  • Mahrt, L., D. Vickers, R. Nakamura, M.R. Soler, J. Sun, S. Burns, and D.H. Lenschow (2001), Shallow drainage flows, Bound.-Layer Meteor. 101, 243-260.
  • McNider, R.T., M.D. Moran, and R.A. Pielke (1988), Influence of diurnal and inertial boundary-layer oscillations on long-range dispersion, Atmos. Environ. 11, 2445-2462.
  • Mitchell, M.J., R.W. Arritt, and K. Labas (1995), A climatology of the warm season Great Plains low-level jet using wind profiler observations, Wea. Forecasting 10, 576-591.
  • Newsom, R.K., and R.M. Banta (2003), Shear-flow instability in the stable nocturnal boundary layer as observed by Doppler lidar during CASES-99, J. Atmos. Sci. 30, 16-33.
  • Newsom, R.K., and R.M. Banta (2004a), Assimilating coherent Doppler lidar measurements into a model of the atmospheric boundary layer. I: Algorithm development and sensitivity to measurement error, J. Atmos. Ocean. Technol. 21, 1328-1345.
  • Newsom, R.K., and R.M. Banta (2004b), Assimilating coherent Doppler lidar measurements into a model of the atmospheric boundary layer. II: Sensitivity analyses, J. Atmos. Ocean. Technol. 21, 1809-1824.
  • Nieuwstadt, F.T.M. (1984), The turbulent structure of the stable, nocturnal boundary layer, J. Atmos. Sci. 41, 2202-2216.
  • Obukhov, A.M. (1971), Turbulence in an atmosphere with a non-uniform temperature, Bound.-Layer Meteor. 2, 7-29.
  • Ohya, Y. (2001), Wind-tunnel study of atmospheric stable boundary layers over a rough surface, Bound.-Layer Meteor. 98, 57-82.
  • Ohya, Y., D.E. Neff, and R.N. Meroney (1997), Turbulence structure in a stratified boundary layer under stable conditions, Bound.-Layer Meteor. 83, 139-161.
  • Pichugina, Y.L., R.M. Banta, N.D. Kelley, S.P. Sandberg, J.L. Machol, and W.A. Brewer (2004), Nocturnal low-level jet characteristics over southeastern Colorado, 16th Symposium on Boundary Layers and Turbulence, Portland ME, Paper 4.11, 6 pp. (preprints).
  • Pichugina, Y.L., R.M. Banta, W.A. Brewer, N.D. Kelley, R.K. Newsom, and S.C. Tucker (2008), Evaluation of Doppler-lidar-based horizontal-velocity and turbulence profiles to averaging procedures, J. Atmos. Ocean. Technol. 24 (submitted).
  • Poulos, G., W. Blumen, D.C. Fritts, J.K. Lundquist, J. Sun, S.P. Burns, C. Nappo, R, Banta, R. Newsom, J. Cuxart, E. Terradellas, B. Balsley, and M. Jensen (2002), CASES-99: A comprehensive investigation of the stable nocturnal boundary layer, Bull. Amer. Meteor. Soc. 83, 555-581.
  • Seibert, P., F. Beyrich, S.-E. Gryning, S. Joffre, A. Rasmussen, and P. Tercier (2000), Review and intercomparison of operational methods for the determination of the mixing height, Atmos. Environ. 34, 1001-1027.
  • Smedman, A.-S. (1988), Observations of a multi-level turbulence structure in a very stable atmospheric boundary layer, Bound.-Layer Meteor. 44, 231-253.
  • Smedman, A.-S., M. Tjernström, and U. Högström (1993), Analysis of the turbulence structure of a marine low-level jet, Bound.-Layer Meteor. 66, 105-126.
  • Smedman, A.-S., H. Bergström, and B. Grisogano (1997), Evolution of stable internal boundary layers over a cold sea, J. Geophys. Res. 102, 1091-1099.
  • Song, J., K. Liao, R.L. Coulter, and B.M. Lesht (2005), Climatology of the low-level jet at the Southern Great Plains atmospheric boundary layer experiment site, J. Appl. Meteor. 44, 1593-1606.
  • Steeneveld, G.J., B.J.H. van de Wiel, and A.A.M. Holtslag (2007), Diagnostic equations for the stable boundary layer height: Evaluation and dimensional analysis, J. Appl. Meteor. Climate 46, 212-225.
  • Stensrud, D.J. (1996), Importance of the low-level jet to climate, J. Climate 9, 1698-1711.
  • Sun, J., S.P. Burns, D.H. Lenschow, R.M. Banta, R.K. Newsom, R. Coulter, S. Frasier, T. Ince, C.J. Nappo, J. Cuxart, W. Blumen, X. Lee, and X.-Z. Hu (2002), Intermittent turbulence associated with a density current passage in the stable boundary layer, Bound.-Layer Meteor. 105, 199-219.
  • Sun, J., D. Lenschow, S. Burns, R. Banta, R. Newsom, R. Coulter, S. Frasier, T. Ince, C. Nappo, B. Balsley, M. Jensen, L. Mahrt, D. Miller, and B. Skelly (2004), Intermittent turbulence in stable boundary layers and the processes that generate it, Bound.-Layer Meteor. 110, 255-279.
  • van de Wiel, B.J.H., A. Moene, O. Hartogensis, H.A.R. de Bruin, and A.A.M. Holtslag (2002a), Intermittent turbulence in the stable boundary layer over land. Part I: A bulk model, J. Atmos. Sci. 59, 942-958.
  • van de Wiel, B.J.H., A. Moene, R.J. Ronda, H.A.R. de Bruin, and A.A.M. Holtslag (2002b), Intermittent turbulence in the stable boundary layer over land. Part II: A system dynamics approach, J. Atmos. Sci. 59, 2567-2581.
  • van de Wiel, B.J.H., A. Moene, O. Hartogensis, H.A.R. de Bruin, and A.A.M. Holtslag (2003), Intermittent turbulence in the stable boundary layer over land. Part III: A classification for observations during CASES-99, J. Atmos. Sci. 60, 2509-2522.
  • Vickers, D., and L.J. Mahrt (2003), The cospectral gap and turbulent flux calculations, J. Atmos. Ocean. Technol. 20, 660-672.
  • Vickers, D., and L.J. Mahrt (2004), Evaluating formulations of stable boundary layer height, J. Appl. Meteor. 43, 1736-1749.
  • Vickers, D., and L.J. Mahrt (2006), A solution for flux contamination by mesoscale motions with very weak turbulence, Bound.-Layer Meteor. 118, 431-447.
  • Vogelezang, D.H.P., and A.A.M. Holtslag (1996), Evaluation and model impacts of alternative boundary-layer height formulations, Bound.-Layer Meteor. 81, 245-269.
  • Wetzel, P.J. (1982), Toward parameterization of the stable boundary layer, J. Appl. Meteor. 21, 7-13.
  • Whiteman, C.D., X. Bian, and S. Zhong (1997), Low-level jet climatology from enhanced rawinsonde observations at a site in the Southern Great Plains, J. Appl. Meteor. 36, 1363-
  • 1376.
  • Wulfmeyer, V.O., M. Randall, W.A. Brewer, and R.M. Hardesty (2000), 2 µm Doppler lidar transmitter with high frequency stability and low chirp, Opt. Lett. 25, 1228-1230.
  • Wyngaard, J.C. (1973), On Surface-Layer Turbulence. Workshop on Micrometeorology, American Meteorological Society, Boston, 101-149.
  • Wyngaard J.C., and O.R. Coté (1972), Cospectral similarity in the atmospheric surface layer, Quart. J. Royal Meteor. Soc. 98, 590-603.
  • Zhong, S., and J.D. Fast (2003), An evaluation of the MM5, RAMS, and Meso-Eta models at subkilometer resolution using field campaign data in the Salt Lake Valley, Mon. Wea. Rev. 131, 1301-1322.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL7-0023-0018
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.