PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A simple formula for shape and depth determination from residual gravity anomalies

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a simple method for shape and depth determination of a buried structure from residual gravity anomalies along profile. The method utilizes the anomaly values of the origin and characteristic points of the profile to construct a relationship between the shape factor and depth of the causative source. For fixed points, the depth is determined for each shape factor. The computed depths are then plotted against the shape factor representing a continuous monotonically increasing curve. The solution for the shape and depth of the buried structure is then read at the common intersection point of the depth curves. This method is applied to synthetic data with and without random errors. Finally, the validity of the method is tested on two field examples from the USA.
Czasopismo
Rocznik
Strony
182--190
Opis fizyczny
Twórcy
autor
Bibliografia
  • Abdelrahman, E.M., and T.M. El-Araby, 1993, A least-squares minimization approach to depth determination from moving average gravity anomalies, Geophysics 59, 1779-1784.
  • Abdelrahman, E.M., and S.M. Sharafeldin, 1995, A least-squares minimization approach to shape determination from gravity data, Geophysics 60, 589-590.
  • Abdelrahman, E.M., A.I. Bayoumi, Y.E. Abdelhady, M.M. Gobashy and H.M. El-Araby, 1989, Gravity interpretation using correlation factors between successive least-squares residual anomalies, Geophysics 54, 1614-1621.
  • Abdelrahman, E.M., A.I. Bayoumi and H.M. El-Araby, 1991, A least-squares minimization approach to invert gravity data, Geophysics 56, 115-118.
  • Abdelrahman, E.M., H.M. El-Araby, T.M. El-Araby and E.R. Abo-Ezz, 2001, Three leastsquares minimization approach to depth, shape, and amplitude coefficient determination from gravity data, Geophysics 66, 1105-1109.
  • Bowin, C., E. Scheer and W. Smith, 1986, Depth estimates from ratios of gravity, geoid, and gravity gradient anomalies, Geophysics 51, 123-136.
  • Butler, D.K., 1984, Microgravimetric and gravity gradient techniques for detection of subsurface cavities, Geophysics 49, 1084-1096.
  • Gupta, O.P., 1983, A least-squares approach to depth determination from gravity data, Geophysics 48, 357-360.
  • Lines, L.R., and S. Treitel, 1984, A review of least-squares inversion and its application to geophysical problems, Geophys. Prosp. 32, 159-186.
  • Mohan, N.L., L. Anandababy and S. Roa, 1986, Gravity interpretation using Mellin transform, Geophysics 52, 114-122.
  • Nettleton, L.L., 1976, Gravity and Magnetics in Oil Prospecting, McGraw-Hill Book Co., New York, pp. 462.
  • Odegard, M.E., and J.W. Berg, 1965, Gravity interpretation using the Fourier integral, Geophysics 30, 424-438.
  • Roy, A., 1962, Ambiguity in geophysical interpretation, Geophysics 27, 90-99.
  • Roy, L., B.N.P. Agarwal and R.K. Shaw, 2000, A new concept in Euler deconvolution of isolated gravity anomalies, Geophys. Prosp. 16, 77-93.
  • Shaw, R.K., and B.N.P. Agarwal, 1990, The application of Walsh transform to interpret gravity anomalies due to some simple geometrically shaped causative sources: A feasibility study, Geophysics 55, 843-850.
  • Thompson, D.T., 1982, EULDPH-a new technique for making computer-assisted depth estimates from magnetic data, Geophysics 47, 31-37.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL7-0021-0017
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.