PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Two models of parameterized convection for medium-sized icy satellites of Saturn

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A parameterized theory of convection is developed for 6 medium-size icy satellites (MIS) of Saturn. It is an extension of the research concerning the Mimas -Enceladus paradox. Two parameterizations of dimensionless temperature are used in the model and a new constrain for tidal heating is included. It is found that the basic results of the model are independent of particulars of the parameterizations. The new constrain considerably reduces the space of possible values of the material parameter of satellites but the two basic conclusions are unchanged, i.e.: (a) the thermal state of the considered MIS can be explained in the frame of the uniform model that includes radiogenic and tidal heating; (b) the theory indicates that endogenic activity of some MIS was (or is) a result of a specific ‘excited’, high temperature state of a given satellite. The theory could be also used for estimation of tidal heating.
Czasopismo
Rocznik
Strony
280--302
Opis fizyczny
Twórcy
  • Institute of Geophysics, Warsaw University ul. Pasteura 7, 02-093 Warszawa, Poland, lczech@fuw.edu.pl
Bibliografia
  • Barr, A.C., and R.T. Pappalardo, 2005, Onset of convection in the icy Galilean satellites: influence of rheology, J. Geophys. Res. 110, E12005, doi:10,11029/2004/JE002371.
  • Christensen, U., 1984, Convection with pressure and temperature-dependent non-Newtonian rheology, Geophys. J. Roy. Astron. Soc. 77, 343-84.
  • Czechowski, L., 1993, Theoretical Approach to Mantle Convection. In: R. Teisseyre, L. Czechowski and J. Leliwa-Kopystyński (eds.), "Dynamics of the Earth's Evolution", Elsevier, Amsterdam, The Netherlands, 161-271.
  • Czechowski, L., 2004a, Parameterized model of convection driven by tidal and radiogenic heating, Presented on COSPAR, 18-25 July 2004, Paris, Session B0.5/D3.7/C3.4.
  • Czechowski, L., 2004b, Convection driven by tidal heating: numerical model and parameterized theory, Paper presented on International Congress of Theoretical and Applied Mechanics (ICTAM) in August 2004, Warszawa.
  • Czechowski, L., 2005, Endogenic activity of medium-size icy satellites of Saturn and eccentricities of their orbits (submitted).
  • Czechowski, L., 2006, Parameterized model of convection driven by tidal and radiogenic heating, Adv. Space Res. (in print).
  • Czechowski, L., and J. Leliwa-Kopystyński, 2003, Tidal heating and convection in medium sized icy satellites, Celest. Mech. and Dyn. Astr. 87, 157-169.
  • Czechowski, L., and J. Leliwa-Kopystyński, 2005, Convection driven by tidal and radiogenic heating in medium sized icy satellites, Planet. Space Sci. 53, 749-769.
  • De Pater, I., and J.J. Lissauer, 2001, Planetary Sciences, Cambridge Univ. Press, Cambridge, UK, pp. 528.
  • Dumoulin, C., M.-P. Doin and L. Fleitout, 1999, Heat transport in stagnant lid convection with temperature- and pressure-dependent Newtonian or non-Newtonian rheology, J. Geophys. Res. 104, 12 759-12 777.
  • Durham, W.B., S.H. Kirby and L.A. Stern, 1998, Rheology of planetary ices. In: B. Schmitt,
  • de C. Bergh and M. Festou (eds.), "Solar System Ices", Kluwer Acad. Publ., Dordrecht, The Netherland, 63-78.
  • Ellsworth, K., and G. Schubert, 1983, Saturn icy satellites; thermal and structural models, Icarus 54, 490-510.
  • Federico, C., and P. Lanciano, 1983, Thermal and structural evolution of four satellites of Saturn, Ann. Geophys. 1, 469-476.
  • Fischer, H.-J., and T. Spohn, 1990, Thermal-orbital histories of viscoelastic models of Io (J1), Icarus 83, 39-65.
  • Forni, O., A. Coradini and C. Federico, 1991, Convection and lithospheric strength in Dione, an icy satellite of Saturn, Icarus 94, 232-245.
  • Gavrilov, S.V., and V.N. Zharkov, 1977, Love numbers of the giant planets, Icarus 32, 443-449.
  • Goldsby, D.L., and D.L. Kohlstedt, 1997, Grain boundary sliding in fine-grained Ice-I, Scr. Mater. 37, 1399-1405.
  • Hobbs, P.V., 1974, Ice Physics, Oxford Univ. Press, New York.
  • Jacobson, R.A., 2004, The orbits of the major Saturnian satellites and the gravity field of Saturn from spacecraft and Earthbased observations, submitted to Astron. J. (ssd.jpl.nasa.gov/sat_props.html).
  • Kargel, J.S., and S. Pozio, 1996, The volcanic and tectonic history of Enceladus, Icarus 119, 385-404.
  • Kossacki, K.J., and J. Leliwa-Kopystyński, 1993, Medium-size icy satellites: thermal and structural evolution during accretion, Planet. Space Sci. 41, 729-741.
  • Lissauer, J.J., S.J. Peale and J.N. Cuzzi, 1984, Ring torque on Janus and the melting of Enceladus, Icarus 58, 159-168.
  • McKinnon, W.B., 1998, Geodynamics of Icy Satellites. In: B. Schmitt, de C. Bergh and M. Festou (eds.), "Solar System Ices", Kluwer Acad. Publ., Dordrecht, 525-550.
  • Officer, C.B., 1974, Introduction to Theoretical Geophysics, Springer-Verlag, Berlin.
  • Peale, S.J., 2003, Tidally induced volcanism, Celest. Mech. Dyn. Astr. 87, 129-155.
  • Peale, S.J., P. Cassen and R.T. Reynolds, 1979, Melting of I0 by tidal dissipation, Science 203, 892-894.
  • Peltier, W.R., and G.T. Jarvis, 1982, Whole mantle convection and the thermal evolution of the Earth, Phys. Earth Planet. Int. 29, 281-304.
  • Poirier, J.P., L. Bloch and P. Chambon, 1983, Tidal dissipation in small viscoelastic ice moons: the case of Enceladus, Icarus 55, 218-230.
  • Roscoe, R., 1952, The viscosity of suspensions of rigid spheres, British J. Appl. Phys. 3, 267-269.
  • Ross, M.N., and G. Schubert, 1989, Viscoelastic models of tidal heating in Enceladus, Icarus 78, 90-101.
  • Rothery, D.A., 1992, Satellites of the Outer Planets, Clarendon Press, Oxford.
  • Schubert, G., D. Stevenson and P. Cassen, 1980, Whole planet cooling and radiogenic heat source contents of the Earth and Moon, J. Geophys. Res. 85, 2511-2518.
  • Schubert, G., T. Spohn and R.T. Reynolds, 1986, Thermal histories, compositions and internal structures of the moons of the solar system. In: J.A. Burns and M.S. Matthews (eds.), "Satellites", The University of Arizona Press, Tucson, 224-292.
  • Schubert, G., D.L. Turcotte and P. Olson, 2001, Mantle convection in the Earth and Planets. Cambridge Univ. Press, Cambridge, UK.
  • Sharpe, H.N., and W.R. Peltier, 1978, Parameterized mantle convection and the Earth's thermal history, Geophys. Res. Lett. 5, 737-740.
  • Spann, N.A., J.W. Head and R.T. Pappalardo, 2002, The spacing distances of chaos and lenticulae on Europa, Lunar and Planet. Sci. 33, 1723.pdf.
  • Squyres, S.W., R.T. Reynolds, P.M. Cassen and S.J. Peale, 1983, The evolution of Enceladus, Icarus 53, 319-331.
  • Turcotte, D.L., and G. Schubert, 1982, Geodynamics, J. Wiley and Sons, New York, pp. 450.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL7-0014-0066
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.