PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A residence time model for stream-subsurface exchange of contaminants

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Stream-subsurface exchange of substances has received increasing attention in past two decades. This growing interest is the result of an interdisciplinary approach to environmental problems, where very different expertises must come together to face modern challenges. The importance of the hyporheic zone in the ecological evolution of a natural river has been assessed in many ways. The role of hydraulic engineering in this field is to develop modelling tools capable of estimating the fate of the contaminants after they reach the river. The fate of contaminants depends on complex interactions between the fluid and the substances, hydrodynamics being a key factor. A few models have been proposed in the literature. Some of them are lacking solid physical basis, some others have never been applied to field cases. A new conceptual model is presented here, which is thought to optimize the input of data from field tracer tests on a sound physical basis. The potential of the model is described by the application to a major Israeli river, where the expected contamination of the upper part of the hyporheic zone has been estimated.
Rocznik
Strony
527--538
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
autor
  • Department of Hydraulic, Maritime, Environmental and Geotechnical Engineering (IMAGE), University of Padova, Via Loredan 20, 35131 Padova, Italy
autor
  • Department of Hydraulic, Maritime, Environmental and Geotechnical Engineering (IMAGE), University of Padova, Via Loredan 20, 35131 Padova, Italy
Bibliografia
  • Bencala, K.E., 1984: "Interactions of solutes and streambed. 2. A dynamic analysis of coupled hydrologic and chemical processes that determine solute transport". Water Resour. Res. 20(12), pp. 1804-1814.
  • Castro, N.M., and G.M. Homberger, 1991: "Surface-subsurface interactions in an alluviated mountain stream channel". Water Resour. Res. 27 (7), pp. 1613-1621.
  • Elliott, A.H., 1990: "Transport of solutes into and out streambeds". Report No. KH-R-52, W.M. Keck Laboratory of Hydraulics and Water Resources, California Institute of Technology, Pasadena, CA.
  • Elliott, A.H., and N.H. Brooks, 1997a: "Transfer of nonsorbing solutes to a streambed with bed forms: Theory", Water Resour. Res. 33 (1), pp. 123-136.
  • Elliott, A.H., and N.H. Brooks, 1997b: "Transfer of nonsorbing solutes to a streambed with bed forms: Laboratory experiments". Water Resour. Res. 33 (1), pp. 137-151.
  • Eylers, H., N.H. Brooks, and J.J. Morgan, 1995: "Transport of adsorbing metals from stream water to a stationary sand-bed in a laboratory flume". Marine and Freshwater Research 46, pp. 209-214.
  • Fehlman, H.M., 1985: "Resistance components and velocity distributions of open channel flows over bedforms". Master Thesis, Colorado State University, Fort Collins, Colorado.
  • Femald, A.G., P.J. Wigington Jr., and H.L. Dixon, 2001: "Transient Storage and Hyporheic Flow along the Willamette River, Oregon: Field Measurements and Model Estimates", Water Resour. Res. 37 (6), pp. 1681-1694.
  • Hart, D.R., 1995: "Parameter estimation and stochastic interpretation of the transient storage model for solute transport in streams". Water Resour. Res. 31 (2), pp. 323-328.
  • Marion, A., M. Bellinello, I. Guymer, and A.I. Packman, 2002: "Effect of bedforms geometry on the penetration of passive solutes into a stream bed". Water Resour Res. 38 (10), p. 1209, DOI: 10.1029/2001WR00264, 27-1 - 27-12.
  • Marion, A., M. Zaramella, and A.I. Packman, 2003: "Parameter estimation of the Transient Storage Model for stream-subsurface exchange", J. Environ. Eng. 129 (5), pp. 456-463, DOI: 10.1061/(ASCE)0733-9372(2003)129:5(456).
  • Mulholland, P.J., E.R. Marzolf, J.R. Webster, D.R. Hart, and S.P. Hendricks, 1997: "Evidence that hyporheic zones increase hetrotrophic metabolism and phosphorus uptake in forest streams" Limnol. Oceanogr. 42, pp. 443-451.
  • Packman, A.I., N.H. Brooks, and J.J. Morgan, 2000a: "A physicochemical model for colloid exchange between a stream and a sand streambed with bedforms", Water Resour. Res. 36 (8), pp. 2351-2361.
  • Packman, A.I., N.H. Brooks, and J.J. Morgan, 2000b: "Kaolinite exchange between a stream and stream bed: Laboratory experiments and evaluation of a colloid transport model", Water Resour. Res. 36 (8), pp. 2363-2372.
  • Packman, A.I., M. Salehin, and M. Zaramella, 2004: "Hyporheic exchange with gravel beds: basic hydrodynamic interactions and bedform-induced advective flows", J. Hydraulic Eng. 130 (7), pp. 647-656, DOI:10.1061/(ASCE)0733-9429(2004) 130:7(647).
  • Richardson, CP., and A.D. Parr, 1988: "Modified Fickian Model for Solute Uptake by Run¬off, J. Environ. Eng. 114 (4), pp. 792-809.
  • Rutherford, J.C., G.J. Latimer, and R.K. Smith, 1993: "Bedform mobility and benthic oxyg uptake". Water Res. 27 (10), pp. 1545-1558.
  • Rutherford, J.C., J.D. Boyle, A.H. Elliott, T.V.J. Hatherell, and T.W. Chiu, 1995: "Modell benthic oxygen uptake by pumping", J. Environ. Eng. 121 (1), pp. 84-95.
  • Vallet, H.M., J.A. Morice, C.N. Dahm, and M.E. Сатрапа, 1996: "Parent lithology, surf-groundwater exchange, and nitrate retention in headwater streams", Limnol. Осе ogr 41 (29), pp. 333-345.
  • Worman, A., 2000: "Comparison of models for transient storage in small streams", Wat Resour. Res. 36 (2), pp. 455-68.
  • Zaramella, M., A.L Packman, and A. Marion, 2003: "Application of the transient storage model to analyze advective hyporheic exchange with deep and shallow sediment beds". Water Resour. Res. 39 (7), p. 1198, DOL10.1029/2002WR001344.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL7-0009-0049
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.