Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper describes the main features of the DISCUS model for one-dimensional advection-dispersion computations in rivers, and describes its application to a short reach of The Murray Burn (a small stream in Edinburgh). DISCUS was calibrated using tracer data and an optimisation technique that uses a genetic algorithm. The optimised dispersion coefficients were found to increase from 0.25 to 2 m2/s in the flow range 16-261 l/s. The model was validated using tracer data not used in the calibration stage. It appears that transient storage does not play a major role in the transport of solutes in the reach that was modeled.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
501--515
Opis fizyczny
Bibliogr. 18 poz.
Twórcy
autor
- School of the Built Environment, Heriot-Watt University, Edingburgh, EH14 4AS, UK
autor
- The Macaulay Institute, Aberdeen, AB15 8QH, UK
Bibliografia
- Burke, N.J., 2002: "Travel time and flow characteristics of a small stream system", PhD Thesis, Heriot-Watt University, Edinburgh (unpublished).
- Celia, M.A., T.F. Russell, I. Herrera and R.E. Ewing, 1990: "An Eulerian-Lagrangian localized adjoint method for the advection-diffusion equation". Adv. Water Resour. 13, 187-206.
- Cox, T.J., J.C. Rutherford and M.J. O'Sullivan, 2002: "Towards modelling nutrient transport and uptake in lowland streams with transient storage". Proc. CSCE/ASCE Int. Conf. Env. Eng., Niagara Falls, Canada.
- Czernuszenko, W., and P.M. Rowiński, 1997: "Properties of the dead-zone model of longitudinal dispersion in rivers", J. Hyd. Res. 35(4), 491-504.
- Leonard, B.P., 1979: "A stable and accurate convective modelling procedure based on quadratic upstream interpolation". Computer Meth. Appl. Mech. Eng. 19, 59-98.
- Leonard, B.P., 2002: "Stability of explicit advection schemes. The balance point location rule". Int. J. Numer. Meth. Fl. 38, 471-514.
- Leonard, B.P, A.P. Lock and M.K. McVean, 1995: "The NIRVANA scheme applied to one-dimensional advection", Int. J. Numer. Meth. Heat Fluid Flow 5, 341-377.
- Manson, J.R., and S.G. Wallis, 2000a: "A conservative, semi-Lagrangian fate and transport model for fluvial systems: part I - Theoretical development". Water Res. 34 (15), 3769-3777.
- Manson, J.R., and S.G. Wallis, 2000b: "A conservative, semi-Lagrangian fate and transport model for fluvial systems: part II - Numerical testing and practical applications", Wafer 34 (15), 3778-3785.
- Manson, J.R., and S.G. Wallis, 2004: "River model calibration: a genetic algorithm with evolutionary bottlenecking". Proc. Riverflow2004, 2nd Int. Conf. on Fluvial Hydraulics, Naples, Italy, June 23-25, Vol. 2, 1217-1221.
- Manson, J.R., S.G. Wallis and D. Hope, 2001: "A conservative semi-Lagrangian transport model for rivers with transient storage zones". Water Resour. Res. 37 (12), 3321-3330.
- Roache, P.J., 1992: "A flux-based modified method of characteristics". Int. J. Numer Meth. Fl. 15, 1259-1275.
- Russell, T.F., and M.A. Celia, 2002: "An overview of research on Eulerian-Lagrangian localized adjoint methods (ELLAM)", AcJv. Water Resour. 25, 1215-1231.
- Rutherford, J.C., 1994, River Mixing, Wiley, Chichester.
- Wallis, S.G., 2005: "Experimental study of travel times in a small stream". In: W. Czernuszenko and P.M. Rowiński (eds.). Water Quality Hazards and Dispersion of Pollutants, Springer, USA, 109-120.
- Wallis, S.G., and J.R. Manson, 1997: "Accurate numerical simulation of advection using large time steps". Int. J. Numer. Meth. Fl. 24, 127-139.
- Wallis, S.G., and J.R. Manson, 2004: "Methods for predicting dispersion coefficients in rivers". Proc. Inst. Civ. Eng., Wat. Man. 157 (WM3), 131-141.
- Wallis, S.G., J.R. Manson and L. Filippi, 1998: "A conservative semi-Lagrangian algorithm for one-dimensional advection-diffusion". Comm. Numer. Meth. Eng. 14, 671-679.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL7-0009-0047