PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Tensor analysis of dislocation-stress relationship based on the extended deformation gradient

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The dislocation density used to estimate the magnitude of paleostress in rocks has been expressed in terms of a scalar quantity. Dislocations are classified into two types: edge dislocations and screw dislocations. However, the scalar expression of dislocations does not contain information on the type of dislocations. Therefore, we cannot see the effect of stress on the type of dislocations. In other words, we can extract the information related to the magnitude but not the orientation from previous dislocation-stress relationship. Then, we attempted to derive the tensor equation for dislocation-stress field. For this analysis, we introduced the extended deformation gradient tensor, that is, a differential geometrical expression of the ordinary deformation gradient tensor. We assumed that: (1) the higher order terms and spatial derivatives of dislocation density can be ignored; (2) the material is isotropic. We found that our tensor equation for dislocation-stress field is the square root expression of the equation derived from the experimental data of aluminum under static tension. Moreover, we found that the type of dislocation affects the stress field through the difference in the value of coefficients of the dislocation-stress relation-ship.
Rocznik
Strony
1--12
Opis fizyczny
Bibliogr. 19 poz.
Twórcy
autor
  • Department of Earth and Planetary Sciences, Faculty of Science, Kobe University, Kobe 657-8501, Japan, yk2000@kobe-u.ac.jp
Bibliografia
  • Czechowski, Z., R. Teisseyre and T. Yamashita, 1994, Theoiy of the earthquake premonitory and fracture rebound processes: evolution of stresses. Acta Geophys. Pol. 42, 119-135.
  • Jung, H., and S. Karato, 2001, Effects of water on dynamically recrystallized grain-size of olivine, J. Struct. Geoi. 23, 1337-1344.
  • Kohlstedt, D.L., C. Goetze and W.B. Durham, 1976, Experimental deformation of single crystal olivine with application to flow in the mantle. In: R.G.J. Strens (ed.), "The Physics and Chemistry of Minerals and Rocks", John Wiley & Sons, London, 35-49.
  • Kröner, E., 1981, Continuum theory of defects. In: R. Balin, M. Kleman and J.P. Poirier (eds.), "Physics of Defects", North-Holland, Amsterdam, 214-315. :
  • Misner, C.W., K.S. Thorne and J.A. Wheeler, 1973, Gravitation, W.H. Freeman, San Francsco.
  • Nagahama, H., and R. Teisseyre, 2000, Microniorphic continuum and fractal fracturing in the й/гоір/іеле, Pageoph 157, 559-574.
  • Peskin, M.E., and D.V. Schroeder, 1995, An Introduction to Quantum Field Theory, Addison -Wesley, Tokyo.
  • Poirier, J.P., 1985, Creep of Crystals, Cambridge University Press, Cambridge.
  • Shiozawa, K., and M. Ohnami, 1974, Study on flow stress of metal by geometrical means as aspect of the continuously dislocated continuum, Proceedings of the 1973 Symposium on Mechanical Behavior of Materials, August 21-23, 1973, Kyoto, 93-104.
  • Takeo, M., and H. Ito, 1997, What can be learned from rotational motions excited by earthquakes! Geophys. J. Intern. 129, 319-329.
  • Teisseyre, R., 1995, Differential geometry methods in deformation problems. In: R. Teisseyre (ed.), "Theory of Earthquake Premonitory and Fracture Processes", Polish Scientific Publisher (PWN), Warszawa, 503-544.
  • Teisseyre, R., and Z. Czechowski, 1993, Unified earthquake premonitory and rebound theory. Acta Geophys. Pol. 41, 1-16.
  • Teisseyre, R., K.P. Teisseyre, T. Moriya and P. Palangio, 2004, Seismic rotation waves related to volcanic, mining and seismic events: near-field and micromorphic motions. Acta Geophys. Pol. 51,409-431.
  • Twiss, R.J., and E.M. Moores, 1992, Structural Geology, W.H. Freeman, New York.
  • Weertman, J., and R. Weertman, 1980, Moving dislocations. In: F.R.N. Nabarro (ed.), "Dislo¬cations on Solids", North-Holland, Amsterdam, 1-59.
  • Yamasaki, K., and H. Nagahama, 1999a, Continuum theory of defects and gravity anomaly. Acta Geophys. Pol. 47, 239-257.
  • Yamasaki, K., and H. Nagahama, 1999b, Hodge duality and continuum theory of defects, J. Physics A: Mathematical and General 32, L475-L481.
  • Yamasaki, K., and H. Nagahama, 2002, A deformed medium including a defect field and differential form, J. Physics A: Mathematical and General 35, 3767-3778.
  • Yamashita, T., and R. Teisseyre, 1994, Continuum theory of earthquake fracturing, J. Phys. Earth 42,425-437.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL7-0009-0003
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.