PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Electromagnetic excitation and seismicity in the natural time domain: simulations with theoretical model

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Numerical simulations of electromagnetic field and electric current are based on the solutions of equations for the dislocation density field with the term including self-interactions between the dislocations; the case under study concerns the charge dislocations. The equations are solved numerically for the medium with thin layers representing the faults and for the initial conditions representing two groups of dislocations of opposite signs facing each other. This case refers to stress concentration; the gradients of stress field, opposite to the central point of stress accumulation, contribute to the respective dislocation densities since the linear dislocation density for a simple 1D case becomes proportional to stress gradient. A single fault, as a zone with small resistance/friction values, is described by rigidities smaller than the bulk rigidity value, while for a fine-band structure of faults the rigidities in the layers between the adjacent faults are assumed to be higher than the bulk value. The results obtained show characteristic features in which the seismic precursory activity simulates that of the main rebound processes represented in the natural time as counted in relation to the consecutive events. Our model contributes to the previous discussion and experimental data related to natural time analysis suggested recently by Varotsos and coworkers.
Rocznik
Strony
477--496
Opis fizyczny
Bibliogr. 33 poz.
Twórcy
autor
  • Institute of Geophysics, Polish Academy of Sciences, ul.Księcia Janusza 64, 01-452 Warszawa
autor
  • Solid Earth Physics Institute, Department of Physics, University of Athens, Panepistimiopolis, Zografos, Athens 157 84, Greece
autor
  • Institute of Geophysics, Polish Academy of Sciences, ul.Księcia Janusza 64, 01-452 Warszawa
Bibliografia
  • 1. Freund, F., M.B. Freund and F. Batlo, 1993, Critical review of electric conductivity measurements and charge distribution analysis of magnesium oxide, J. Geophys. Res. 98, 22209-22229.
  • 2. Freund, F., EJ. Whang and J. Lee, 1994, Highly mobile charge carriers in minerals, electromagnetic phenomena related to earthquake prediction, Terra Sci. Publ. Chem., Tokyo,271-277.
  • 3. Gokhberg, M.B., I.L. Gufeld, I.L. Gershenzon and V.A, Pilipenko, 1985, Electromagnetic effects during rupture of the Earth's crust, Izv. Akad. Nauk SSSR, Fiz. Zemli l, 72-87 (in Russian) and Izv. Earth Phys. 21, 52-63.
  • 4. Hadjicontis, V., and C. Mavromatou, 1994, Transient electric signals prior to rock failure under uniaxial compression, Geophys. Res. Lett. 21, 16, 1687-1690.
  • 5. Hadjicontis, V., and C. Mavromatou, 1995, Electric signals recorded during uniaxial compression of rock samples: Their possible correlation with preseismic electric signals, Acta Geophys. Pol. 43,49-61.
  • 6. Kaufman, A. A., 1994, Geophysical Field Theory and Method. Part C: Electromagnetic Fields II, Academic Press, New York, 335 pp.
  • 7. Kossecka, E., and R. DeWitt, 1977, Disclination kinematic, Arch. Mech. 29, 633-651.
  • 8. Nagahama, H, and R. Teisseyre, 1998, Thermodynamics of line defects and transient electric current: electromagnetic field generation in earthquake preparation zone, Acta Geophys. Pol. 46, 35-54.
  • 9. Ogawa, T., K. Oike and T. Miura, 1985, Electromagnetic radiations from rocks, J. Geophys. Res. 98, D4, 6245-6249.
  • 10. O'Keefe, S.G., and D.V. Thiel, 1995, A mechanism for the production of electromagnetic radiation during fracture of brittle materials, Phys. Earth Planet. Inter. 89, 127-135.
  • 11. Park, S.K., 1994, Precursors to earthquakes: seismo-electromagnetic signals. In: Proceedings of the 12-th IAGA Workshop: "Induction Electromagnetique dans la Terre", Univ. Bretagne Occid., Brest, 179-190.
  • 12. Sevtsova, I.N., 1984, Charging of dislocations during deformation of crystals with ionic-type bonds, Izv. Earth Phys. 20, 8, 643-648.
  • 13. Sommerfeld, A., 1964, Electrodynamic, Vorlesungen Unber Theoretische Physik, Band III, Akademische Verlag, Leipzig, 345 pp.
  • 14. Teisseyre, R., 1992, Earthquake premonitory processes: Evolution of stresses and electric current generation, Terra Nova 4, 509-513.
  • 15. Teisseyre, R., 1995, Electric field generation in earthquake premonitory process. In: R. Teisseyre (ed.), "Theory of Earthquake Premonitory and Fracture Processes", PWN, Warszawa, 282-292.
  • 16. Teisseyre, R., 1996, Motion and flow equation for stresses, Acta Geophys. Pol. 44, 19-29.
  • 17. Teisseyre, R., 2001, Dislocation dynamics and related electromagnetic excitation, Acta Geophys. Pol. 49, 55-73.
  • 18. Teisseyre, R., and H. Nagahama, 1998, Dislocation field evolution and dislocation source/si function, Acta Geophys. Pol. 46, 13-33.
  • 19. Teisseyre, R., and T. Yamashita, 1999, Splitting stress motion equation into seismic wave and fault-related fields, Acta Geophys. Pol. 47, 135-147.
  • 20. Utada, H., 1993, On the physical background of the VAN earthquake prediction method, Tectonophysics 224, 153-160.
  • 21. Varotsos, P., 2004, The physics of seismic electric signals, Terra Publ., Tokyo (in print).
  • 22. Varotsos, P., and K. Alexopoulos, 1984a, Physical properties of the variations of the electic field of the earth preceding earthquakes I, Tectonophysics 110, 73-98.
  • 23. Varotsos, P., and K. Alexopoulos, 1984b, Physical properties of the variations of the electric field of the earth preceding earthquakes II. Determination of epicenter and magnitude, Tectonophysics 110, 99-125.
  • 24. Varotsos, P., and K. Alexopoulos, 1986, Thermodynamics of Point Defects and their Relation with the Bulk Properties, North Holland Publ. Comp., Amsterdam-New York 474 pp.
  • 25. Varotsos, P., K. Alexopoulos and K. Nomicos, 1982, Comments on the pressure variation i the Gibbs energy for bound and unbound defects, Physica Status Solidi (b) 111 581-590.
  • 26. Varotsos, P., N.G. Bogris and A. Kyritsis, 1992, Comments on the depolarization current stimulated by variations of temperature or pressure, J. Phys. Chem. Solids. 53, 8, 1007-1011.
  • 27. Varotsos, P., N. Sarlis and E. Skordas, 2001, Spatiotemporal complexity aspects on the interrelation between seismic electric signals and seismicity, Practica of Athens Academy 76, 294-321.
  • 28. Varotsos, P., N. Sarlis and E. Skordas, 2002a, Long-range correlations in the electric signalsi, that precede rapture, Phys. Rev. E 66, 011902 (7).
  • 29. Varotsos, P., N. Sarlis and E. Skordas, 2002b, Seismic electric signals and seismicity: On a tentative interrelation between their spectral content, Acta Geophys. Pol. 50, 337-354.
  • 30. Varotsos, P., N. Sarlis and E. Skordas, 2003a, Long-range correlation in the electric signals that precede rapture: Further investigations, Phys. Rev. E 67, 021109 (13).
  • 31. Varotsos, P., N. Sarlis and E. Skordas, 2003b, Attempt to distinguish electric signals of a dichotomous nature, Phys. Rev. E 68, 031106 (7).
  • 32. Waters, W.E., 1983, Electrical Induction from Distant Current Surges, Prentice-Hall, Englewood Cliffs N.J, 168 pp.
  • 33. Whitworth, R.W., 1975, Charged dislocations in ionic crystals, Adv. Phys. 24, 2, 203-304.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL7-0008-0023
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.