PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Density-velocity relationship in the upper lithosphere obtained from P- and S-wave velocity models along the EUROBRIDGE'97 seismic profile and gravity data

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Traditionally, joint interpretation of seismic refraction and wide-angle reflection data and gravity data is based upon a well-known correlation between seismic P-wave velocity and density proved by numerous laboratory investigations of elastic properties of crustal rocks. One of the problems connected with this approach is that rocks with high content of calcium-reach plagioclase have higher P-wave velocity and do not satisfy the common density-Vp relationship. That is why joint interpretation based upon any conventional relationship between density and P-wave velocity cannot be applied to wide-angle profiles across large anorogenic rapakivi-gabbro-anorthosite massifs composed of rocks with high content of plagioclase. The problem can be solved if both P- and S-wave velocities are used to calculate the density model. The results of laboratory studies of rock properties demonstrate strong correlation between density and S-wave velocity. Moreover, the isotropic S-wave velocity seems to be generally more correlated to density than the P-wave velocity and less affected by high content of plagioclase. In spite of that, the known relationships connecting density to S-wave velocity or to both P- and S-wave velocities are very seldom used for joint interpretation of seismic and gravity data. The main reason for this is a lower quality of S-wave arrivals in explosion seismology, which makes it difficult to obtain reliable S-wave velocity models. In our paper we present the results of joint interpretation of seismic and gravity data collected along the EUROBRIDGE'97 wide-angle reflection and re-fraction profile in the Ukrainian Shield, where the absence of thick sediments made it possible to obtain both P- and S-wave velocity models. To calculate the density model along the EUROBRIDGE'97 profile we used a method of gravity data inversion, in which the density model was parameterised by the relationship connecting density to both P- and S-wave velocity models. Such a parameterisation makes it possible to obtain the relationship between density and seismic velocities by inverting the gravity data. As a result, non-linear and scattered relationship between density and seismic velocities was obtained for the EUROBRIDGE'97 profile. Analysis of the relationship demonstrated that the reason for this scattering is difference in density-velocity relationships for large-scale geological units crossed by the profile. In order to explain this difference, we compared the relationship between seismic velocities and density in three major geological units crossed by the EUROBRIDGE'97 profile with the petrophysical data from the Ukrainian Shield and other selected Precambrian areas. We demonstrated that the deviations from the averaged density-velocity relation-ships can be explained by specific mineral composition of rocks resulting from different age and conditions of crust formation. We showed how the analysis of density-velocity diagrams can be used to restrict the composition of the crust and, in particular, the composition and metamorphic grade of the lower crust.
Rocznik
Strony
397--424
Opis fizyczny
Bibliogr. 63 poz.
Twórcy
  • Sodankylä Geophysical Observatory/Oulu Unit, POB 3000, FIN-90014, University of Oulu, Finland
autor
  • Institute of Geophysics, Polish Academy of Sciences, Księcia Janusza 64, 01-452 Warszawa
autor
  • Sodankylä Geophysical Observatory/Oulu Unit, POB 3000, FIN-90014, University of Oulu, Finland
autor
  • Institut of Geological Sciences, Zhodinskaya str 7, Minsk 220141, Belarus
autor
  • Institute of Geophysics, Warsaw University, ul Pasteura 7, 02-093 Warszawa Poland
Bibliografia
  • 1.Aizberg, R.E., R.G. Garetsky, S.V. Klushin and E.A. Levkov, 1987, Deep structure and geodynamic of the Pripyat palaeorift and its frame. In: A.L. Yanshin (ed.), "Actual Problems of Tectonic of Oceans and Continents", Nauka, Moscow, 200-211 (in Russian).
  • 2. Anderson, D.L., 1967, A seismic equation of state, Geophys. J. 13, 9-30.
  • 3. Austrheim, H., M. Erambert and A.K. Engvik, 1997, Processing of crust in the root of the Caledonian continental collision zone: the role of eclogitization, Tectonophysics 273, 129-153.
  • 4. Barton, P.J., 1986, The relationship between seismic velocity and density in the continental crust -a useful constraint?, Geophys. J. Roy. astron. Soc. 87, 195-208.
  • 5.Belikov, B.P., K.S. Alexandrov and T.W. Rysova, 1970, Elastic Properties of Rock Forming Minerals and Rocks, Nauka, Moscow (in Russian).
  • 6.Birch, F., 1961, The velocity of compressional waves in rocks to 10 kilobars (Part II), J. Geo¬phys. Res. 65, 1083-1102.
  • 7. Bogdanova, S., and EUROBRIDGE colleagues, 1996a, EUROBRIDGE: Palaeoproterozoic Accretion of Sarmatia and Fennoscandia. In: D.G. Gee and H.J. Zeyen (eds.),"EUROPROBE 1996 - Lithosphere Dynamics: Origin and Evolution of Continents",EUROPROBE Secretariat, Uppsala, 81-86.
  • 8. Bogdanova, S.V., I.K. Pashkevich, R. Gorbatschev and M.I. Orlyuk, 1996b, Riphean rifting and major Palaeoproterozoic boundaries in the East European Craton: Geology and geophysics, Tectonophysics 268, 1-21.
  • 9.Bogdanova, S.V., I.K. Pashkevich, V.B. Buryanov, I.B. Makarenko, M.I. Orlyuk, V.M. Skobelev, V.I. Starostenko and O.V. Legostaeva, 2004, The 1.80-1.74 Ga gabbro-anorthosite-rapakivi Korosten Pluton in the Ukrainian Shield: a 3-D geophysical reconstruction of deep structure, Tectonophysics 381, 5-7.
  • 10. Carmichael, R.S. (ed.), 1989, Practical Handbook of Physical Properties of Rocks and Minerals, CRC Press, Boca Raton, Florida, 741 pp.
  • 11. Christensen, N.I., and W.D. Mooney, 1995, Seismic velocity and composition of the Continental crust: a global view, J. Geophys. Res. 100, B7, 9761-9788.
  • 12. Claesson, S., S.V. Bogdanova, E.V. Bibikova and R. Gorbatschev, 2001, Isotopic evidence of palaeoproterozoic accretion in the basement of the East European Craton, Tectonophysics 339, 1/2, 1-18.
  • 13. Červený, V., and I. Pśenćik, 1983, SEIS83 - numerical modelling of seismic wave fields in 2-D laterally varying layered structure by the ray method. In: E.R. Engdahl (ed.), "Documentation of Earthquake Algorithm, World Data Centre A for Solid Earth Geophysics", Boulder, Re. SE-35, 36-40.
  • 14. Dortman, N.B. (ed.), 1992, Petrophysics. A Handbook. Book 1: Rocks and Minerals, Nedra, Moscow (in Russian).
  • 15. Egorova, T.P., V.I. Starostenko, V.G. Kozlenko and J. Yliniemi, 2003, Lithosphere of the Ukrainan Shield and Pripyat Through revealed by the gravity studies, Geophys. J. 25, 4, 26-58.
  • 16. Elo, S., 1997, Interpretation of the gravity anomaly map of Finland, Geophysica 33, 1, 51-80.
  • 17. EUROBRIDGE Seismic Working Group, 1999, Seismic velocity structure across the Fenno-scandia-Sarmatia suture of the East European Craton beneath the EUROBRIDGE profile through Lithuania and Belarus, Tectonophysics 314, 193-217.
  • 18. EUROBRIDGE Seismic Working Group, 2001, EUROBRIDGE'95: deep seismic profiling within the East European Craton, Tectonophysics 339, 153-175.
  • 19. Fountain, D.M., T.M. Boundy, H. Austrheim and P. Rey, 1994, Eclogite-facies shear zones-deep crustal reflectors? Tectonophysics 232, 1-4, 411-424.
  • 20. Ganchin, Y.V., S.B. Smithson, I.B. Morozov, D.K. Smythe, V.Z. Garipov, N.A. Karaev and Y. Kristofferson, 1998, Seismic studies around the Kola Superdeep Borehole, Russia, Tectonophysics 288, 1-16.
  • 21. Garetsky, R.G., G.I. Karatayev and J.P Khot'ko (eds.), 1991, Deep Structure of the Earth and Geodynamics of the Belarus Region, Nauka i Technika, Mińsk (in Russian).
  • 22. Gebrande, H., H. Kern and F. Rummel, 1982, Elasticity and inelasticity. In: K.-H. Hellwege (ed.), "Landolt-Börnstein. Numerical Data and Functional Relationships in Science and Technology", New Series; Group V. Geophysics and Space Research. Vol. Ib: "Physical Properties of Rocks", Springer-Verlag, Berlin, 1-233.
  • 23. Goff, J.A., and K. Holliger, 1999, Nature and origin of upper crustal seismic velocity fluctuations and associated scaling properties: combined stochastic analyses of KTB velocity and lithology logs, J. Geophys. Res. 104, B6, 13,169-13,182.
  • 24. Green, D.H., and A.E. Ringwood, 1967, An experimental investigation of the gabbro to eclogite transformation and its petrological applications, Geochimica et Cosmochimica Acta 31, 767-833.
  • 25. Henkel, H., M.K. Lee and C.-E. Lund, 1990, An integrated geophysical interpretation of the 2000 km FENNOLORA section of the Baltic Shield. In: R. Freeman, P. Giese and St. Mueller (eds.), "The European Geotraverse: Integrative studies", ESF, Strasbourg, 1-48.
  • 26. Hurich, C.A., S.J. Deemer and A. Indares, 2001, Composition and metamorphic controls on velocity and reflectivity in the Continental crust: An example from the Greenville Province of eastern Quebec, J. Geoph. Res. 106, Bl, 665-682.
  • 27. Karatayev, G.I., 1966, Correlation Technique of Geological Interpretation of Geophysical Anomalies, Nauka, Novosibirsk (in Russian).
  • 28. Karatayev, G.I., R.E. Girin and I.V Dankevich (eds.), 1993, Geophysical Models of the Earth's Crust of the Belarus-Baltic Region, Nauka i Technika, Mińsk (in Russian).
  • 29. Kern, H., and A. Richter, 1981, Temperature derivates of compressiojial and shear wave velocities in crustal and mantle rocks at 6 kbar confining pressure, J. Geophys. 49, 47-57.
  • 30. Kern, H., Ch. Walther, E.R Flüh and M. Marker, 1993, Seismic properties of rocks exposed in the POLAR profile region. Constraints on the interpretation of the refraction data, Precambrian Research 64, 169-187.
  • 31. Khalevin, N.N., A.L. Aleynikov, E.N. Kolupaeva, A.M. Tyunova and F.F. Yunusov, 1986, On the joint use of longitudinal and transverse waves in deep seismic sounding, Geologia i Geofizika 10 (in Russian), 94-98.
  • 32. Kneib, G., 1995, The statistical nature of the upper continental crystalline crust derived from in situ seismic measurements, Geophys. J. Int. 122, 594-616.
  • 33. Komminaho, K., 1998, Software manual for programs MODEL and XRAYS - a graphical interface for SEIS83 program package, Uniyersity of Oulu, Dept. of Geophys., Report 20.
  • 34. Kozlovskaya, E., and J. Yliniemi, 1999, Deep structure of the Earths crust along the SYEKA profile and its extention to the north-east, Geophysica 1-2, 111-123.
  • 35. Kozloyskaya, E., G. Karatayev and J. Yliniemi, 2001a, Lithosphere structure along the northern part of EUROBRIDGE in Lithuania; results from integrated interpretation of DSS and gravity data, Tectonophysics 339, 177-191.
  • 36. Kozlovskaya, E., J. Yliniemi, G Karatayev and EUROBRIDGE Seismic Working Group, 2001b, Integrated density-velocity modeling along EUROBRIDGE' 95-97 wide-angle reflection and refraction profiles: Main results, Journal of EUGXI, Confer. Abstracts 6, p. 365.
  • 37. Kozlovskaya, E., L. Taran, J. Yliniemi and G. Karatayev, 2002, Deep structure of the crust along the Fennoscandia-Sarmatia Junction zone (central Belarus): Results of a geophysical-geological integration, Tectonophysics 358, 97-120.
  • 38. Krasovsky, S.S., 1981, Reflection of Continental-type Crustal Dynamics in the Gravity Field, Naukova Dumka, Kiev (in Russian).
  • 39. Kretz, R., 1983, Symbols for rock-forming minerals, Am. Mineral. 68, 277-279.
  • 40. Lebedev, T.S., 1989, Study of the physical properties of mineral substances in the lithosphere at high pressure and temperature, Geophys. J. 7, 6, 796-822.
  • 41. Lebedev, T.S., and V.A. Korchin, 1982, The relationship between the elastic characteristics of rocks and their mineral composition at high pressure, Geophys. J. 4, 3, 396-410.
  • 42. Lebedev, T.S., V.I. Shapoval and V.A. Korchin, 1972, New data on longitudinal wave velocities in rocks at high thermodynamic parameter, Geofiz. Sbornik 49, 9-27 (in Russian).
  • 43. Lebedev, T.S., V.A. Korchin and P.A. Burtny, 1983, Elastic wave velocity in ultrabasic and magmatic rocks under high pressure and temperature and their variation with depth, Geofiz. Zhur. 5, 5, 36-45 (in Russian).
  • 44. Lebedev, T.S., G. Ya. Novik, V.A. Korchin, M.G. Zil’bershmit and T.K. Zavorykina, 1990, Effect of structural transformations in rocks on changes in their elastic properties under different thermobaric conditions, Geophys. J. 8, 4, 449-467.
  • 45. Lesnaya, I.M., T.E. Plotkina, L.M. Stepanyuk and Ye.N. Bartnitsky, 1995, Age stages of formation of the maficenderbite assemblage of the near Bug region. In: "Geochemistry and Ore Formation", Naukova Dumka, Kiev, 21, 56-69 (in Russian).
  • 46. Lichak, I.L., 1983, Petrology of the Korosten Pluton, Naukova Dumka, Kiev (in Russian).
  • 47. Ludwig, J.F., J.E. Nafe and C.L. Drake, 1970, Seismic refraction. In: A.E. Maxwell (ed.), "The Sea", vol. 4, 53-84, Wiley Inc., New York.
  • 48. Luosto, U., T. Tiira, H. Korhonen, I. Azbel, V. Burmin, A. Buyanov, I. Kosminskaya, V. lonkis and N. Sharov, 1990, Crust and upper mantle structure along the DSS BALTIC profile in SE Finland, Geophys. J. Int. 101, 89-110.
  • 49. Manghnani, M.H., and C.S.P. Ramananotoandro, 1974, Compressional and shear wave velocities in granulite facies rocks and eclogites to 10 kbar, J. Geophys. Res. 79, 5427-5446.
  • 50. Markwick, A.J.W., and H. Downes, 2000, Lower crustal granulite xenoliths from the Archangelsk kimberlite pipes: petrophysical, geochemical and geophysical results, Lithos 51, 135-151.
  • 51. Markwick, A.J.W., H. Downes and N. Veretennikov, 2001, The lower crust of SE Belarus: petrological, geophysical and geochemical constraints from xenoliths, Tectonophysics 339,215-237.
  • 52. Molotova, L.W., and J.I. Vasilev, 1960, On the ratio value of P and S waves in the rocks, Izv. AN SSSR., ser. Geophys. 8, 1097-1116 (in Russian).
  • 53. Schön, J.H., 1998, Physical Properties of Rocks: Fundamentals and Principles of Petrophysics, Pergamon, the Netherlands, 583 pp.
  • 54. Shcherbak, N.P., G.V. Artemenko and Ye.N. Bartnitsky et al, 1989, Geochronological scale of the Precambrian of the Ukrainian Shield, Naukova Dumka, Kiev (in Russian), 144 pp.
  • 55. Simmons, G., 1964, Velocity of compressional waves in various minerals at pressure to 10 kbars, J. Geophys. Res. 69, 6, 1117-1121.
  • 56. Skobelev, V.M., B.G. Yakovlev, S.A. Galiyet et al., 1991, Petrogenesis of Nickel-Bearing Gabbroic Intrusions of the Volynsky Megablock of the Ukrainian, Naukova Dumka, Kiev (in Russian), 140 pp.
  • 57. Smithson, S.B., F. Wenzel, Y.V. Ganchin and I.B. Morozov, 2000, Seismic results at Kola and KTB deep scientific boreholes: velocities, reflections, fluids, and crustal composition, Tectonophysics 329, 301-317.
  • 58. Sobolev, S.V., and A. Y Babeyko, 1994, Modelling of mineralogical composition, density and elastic wave velocities in anhydrous magmatic rocks, Surveys in Geophysics 15, 515-544.
  • 59. Stepanyuk, L.M., E.B. Bibikova, S. Claesson, H.J. Stein, S.V. Bogdanova and V.M. Skobelev, 1999, Geochronological and petrological evidence for far-field effects of 2.1-2.0 Ga convegent tectonics in the western Ukrainian Shield, Abstracts of the 7th EURO-BRIDGE Workshop, 80-83.
  • 60. Stephenson, R.A., S. Bogdanova and C. Juhlin, 1996, Palaeozoic rifting in a 2.0 Ga Andean-type magmatic belt in the East European Craton: structural and rheological implications, 7th Intern. Symp. on "Deep Seismic Profiling of the Continents", 15-20 September 1996, Asilomar, California, Abstracts, p. 46.
  • 61. Thybo, H., T. Janik, V.D. Omelchenko, M. Grad, R.G. Garetsky, A.A. Belinsky, G.I.. Karatayev, G. Zlotski, M.E. Knudsen, R. Sand, J. Yliniemi, T. Tiira, U. Luosto, K. Komminaho, R. Giese, A. Guterch, C.-E. Lund, O.M. Kharitonov, T. Ilchenko, D.V. Lysynchuk, V.M. Skobelev and J.J. Doody, 2003, Upper lithospheric seismic velocity structure across the Pripyat Trough and the Ukrainian Shield along the EUROBRIDGE'97 profile, Tectonophysics 371,41-79.
  • 62. Yerkhogliad, V.M., 1995, Age Stages of Magmatism of the Korosten Pluton. In: "Geochemistry and Ore Formation", Naukova Dumka, Kiev, 21, 70-84 (in Russian).
  • 63. Yoigt, W., 1910, Lerhbuch der Kristallphysic, Teubner-Verlag, Leipzig.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL7-0008-0018
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.