PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Electric properties of water. New experimental data in the 5 Hz - 13 MHz frequency range

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The dielectric permittivity, conductivity and loss tangent of water were measured with non-blocking electrodes for different thicknesses of the sample and for various oscillator levels. The measurements were carried out in the 20-90degreeC temperature range with the 10degeeC interval. Domain Debye resonances in water, as well as changes in dielectric constants, relaxation times and conductivity with temperature were observed. The results show that water has domain structure in the studied temperature range. When the temperature grows, we observed growth of the domain dielectric constants, decrease the domain relaxation times, and growth of the relative width of the Debye resonances.
Słowa kluczowe
Rocznik
Strony
63--76
Opis fizyczny
Bibliogr. 28 poz.
Twórcy
autor
  • Institute of Geophysics, Polish Academy of Sciences, ul. Księcia Janusza 64, 01-452 Warszawa
Bibliografia
  • 1. Akerlof, G.C., and HJ. Oshry, 1950, The dielectric constant of water at high temperatures and in equilibrium with its vapor, J. Am. Chem. Soc. 72, 2844 .
  • 2. Bigalke, J., and A. Junge, 1999, Using evidence of non-linear induced polarization for detecting extended ore mineralizations, Geophys. J. Int. 137, 516-520.
  • 3. Brand, R., P. Lukenheimer, U. Schneider and A. Loidl, 2000, The excess wing in the dielectric loss of glass-forming ethanol: A relaxation process, Phys. Rev. B, 62(13), 8878-8883.
  • 4. Debye, P., 1945, Polar Molecules, Dover Publications, New York.
  • 5. Garambois, S., and M. Dietrich, 2001, Seismo-electric wave conversions in porous media: Field measurements and transfer function analysis, Geophysics 66, 1417-1430.
  • 6. Homes, C.C., T. Vogt, S.M. Shapiro, S. Wakimoto and A.P. Ramirez, 2001, Optical response of high-dielectric-constantperovskite-related oxide, Science 293, 673-676.
  • 7. Kittel, C., 1966, Introduction to Solid State Physics, John Wiley and Sons, New York.
  • 8. Knight, R., and A. Nur, 1987, The dielectric constant of sandstones, 60 kHz to 4 MHz, Geophysics 52, 644-654.
  • 9. Kyritsis, A., M. Siakantari, A. Vassillikou-Dova, P. Pissis and P. Varotsos, 2000, Dielectric and electrical properties of policrystalline rocks at various hydration levels, IEEE 7, 493-497.
  • 10. Kyritsis, A., M. Siakantari, A. Vassillikou-Dova, P. Pissis and P. Varotsos, 2001, Large low frequency dielectric constant exhibited by hydrated rock materials, Proc. Japan. Acad. 77 (B), 19023.
  • 11. Locker, D.A., and J.D. Byerlee, 1985, Complex resistivity measurement of confined rock, J. Geophys. Res. 90, B9, 7839-7847.
  • 12. Owen, B.B., R.C. Miller, C.E. Milner and H.L. Cogan, 1961, The dielectric constant of water as a function of temperature and pressure, J. Phys. Chem. 65, 2065-2070.
  • 13. Rikitake, T., Y. Honkura, H. Tanaka, N. Ohshiman, Y. Sasai, Y. Ishikawa, S. Koyama, M. Kawamura and K. Ohchi, 1980, Changes in the geomagnetic field associated with earthquakes in the Izu Penisula, Japan J. Geomag. Geoelectr. 32, 721-739.
  • 14. Rushe, E.W., and W.B. Good, 1966, Search for discontinuities in the temperature dependence of the dielectric constant of pure waterfrom -5° to +25°C, J. Chem. Phys. 45, 4667-4669.
  • 15. Rusiniak, L., 2000, Dielectric properties and structure of water at room temperature. New experimental data in 5 Hz -13 MHz frequency range, Phys. Chem. Earth (A) 25, 2, 201-207.
  • 16. Rusiniak, L., 2002a, Spontaneous polarization of water in porous structure of a solid body, Geophys. J. Int. 148(2), 313-319.
  • 17. Rusiniak, L., 2002b, Ice as ferroelectric and piezoelectric rock, Geophys. Res. Abstracts 4, 27th EGS General Assembly in Nice (CD-ROM).
  • 18. Schneider, U., P. Lunkenheimer, A. Pimenov, R. Brand and A. Loidl, 2001, Wide range di¬electric spectroscopy on glass-forming materials: An experimental overview, Ferroelectrics 249, 1-2, 89-98.
  • 19. Scott, J.H., R.D. Carroll and D.R. Cunningham, 1967, Dielectric constant and electrical conductivity measurements of moist rock: A new laboratory method, J. Geophys. Res. 72, 20,5101-5115.
  • 20. Smyth, C.P., and C.S. Hitchcock, 1932, Dipole rotation in crystalline solids, J. Am. Chem. Soc. 54, 4631.
  • 21. Sobolev, G.A., 1975, Application of electric method to the tentative short-term forecast of Kamchatka earthquakes, Pure Appl. Geophys. 113, 229-235.
  • 22. Sumi, F., 1961, The induced polarization method in ore investigation, Geophys. Prospect. 19, 459.
  • 23. Varotsos, P., and K. Alexopoulos, , P., 1974, Conductivity and dielectric constants of LiD, Phys. Rev. B9, 1866-1869.
  • 24. Varotsos, P., and K. Alexopoulos, 1984a, Physical properties of the variations of the electric field of the Earth preceding earthquakes. I, Tectonophysics 110, 73-98.
  • 25. Varotsos, P., and K. Alexopoulos, 1984b, Physical properties of the variations of the electric field of the Earth preceding earthquakes. II. Determination of epicenter and magnitude, Tectonophysics 110, 99-125.
  • 26. Vassilikou-Douva, A., S. Grigorakakis, P. Varotsos, A. Kapetanaki and D. Kustikos, 1996, Study of the denaturation process in Albunin-Urea solutions by means of the thermally stimulated depolarization currents technique, J. Phys. Chem. 100, 1914-1917,
  • 27. Vidulich, G.A., and R.L. Kay, 1962, The dielectric constant of water between 0°and 40°C, J. Phys. Chem. 66, 383.
  • 28. Wallace, R.E., and T.L. Teng, 1980, Prediction of the Sungpan-Pingwu earthquakes, August 1976, Bull. Seism. Soc. Am. 70, 1199-1223.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL7-0007-0075
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.