PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Shape memory alloys for civil engineering structures - on the way from vision to reality

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Shape memory alloys (SMA) have been known for many decades. They are mainly used in medicine, electronics, air, and space industry and in the consumer goods industry. Examples are medical implants and instruments, cell phone antennas, frames for glasses, pipe couplings etc. The most usual SMA material on the market is nickel–titanium (Ni–Ti). Until today, SMAs have found very limited applications in civil engineering probably due to their cost and to limited knowledge of the material in the civil engineering industry. This paper presents existing applications, laboratory tests and new concepts of how to use shape memory alloys incorporated in energy dissipation devices, as well as for pre-stressing structures using SMA wires and for post stressing of existing structures using SMA tendons. Attempts to develop new generation of Iron based SMA for using in civil engineering structures will be presented as an alternative to existing high cost NiTi SMAs.
PL
Stopy z pamięcią kształtu znane są od wielu dziesięcioleci. Głównie są one wykorzystywane w medycynie, elektronice, przemyśle lotniczym i kosmicznym oraz w przemyśle towarów konsumpcyjnych. Przykładowo są to implanty i instrumenty medyczne, anteny telefonów komórkowych, oprawki okularów, złączki rurowe itp. Najbardziej typowym na rynku materiałem z pamięcią kształtu jest stop niklowo-tytanowy (Ni-Ti). Dotychczas stopy te miały bardzo ograniczone zastosowanie w budownictwie. Prawdopodobnie spowodowane to było kosztami i ograniczoną znajomością tego materiału w przemyśle budowlanym. W artykule tym przedstawiono istniejące zastosowania, badania laboratoryjne i nowe pomysły na wykorzystanie stopów z pamięcią kształtu będących częścią urządzeń rozpraszających energię, jak również w celu sprężania konstrukcji wykorzystując druty z tych stopów oraz sprężanie istniejących konstrukcji przy użyciu kabli wykonanych z takich stopów. Próby rozwijania nowej generacji stopów z pamięcią kształtu na bazie żelaza do wykorzystania w konstrukcjach budowlanych zaprezentowano jako alternatywę dla istniejących, drogich materiałów niklowo-tytanowych.
Rocznik
Strony
81--94
Opis fizyczny
Bibliogr. 34 poz.
Twórcy
autor
autor
autor
Bibliografia
  • [1] Buehler W.J., Wang F.E.; A Summary of Recent Research on the Nitinol Alloys and Their Potential Application in Ocean Engineering. Journal of Ocean Engineering, 1967.1; p.105-120
  • [2] Helm D.; Formgedächtnislegierungen: Experimentelle Untersuchung, phänomenologische Modellierung und Numerische Simulation der thermomechanischen Materialeigenschaften, PhD Thesis in German, in Institut für Mechanik., Universität Gesamt-hochschule Kassel, Kassel, 2001
  • [3] Fugazza D.; Shape Memory Alloy Devices in Earthquake Engineering: Mechanical Properties, Constitutive Modelling and Numerical Simulations, Msc Thesis. Universita Degli Studi Di Pavia, Rose School, European School of Advanced Studies in Reduction of Seismic Risk, Pavia, 2003
  • [4] Fischer H., Welle B.V.A.; Applications of Shape Memory Alloys in Medical Instruments. Minimally Invasive Therapy & Allied Technologies. 13(4), 2004; p.248-253
  • [5] Mertmann M.; Non-Medical Applications of NITINOL. Minimally Invasive Therapy & Allied Technologies. 13(4), 2004; p.254-260
  • [6] Kubo H., Maruyama T.; Densizairyo, 2002(4); p.56
  • [7] Janke L., Czaderski C, Motavalii M., Ruth J.; Applications of Shape Memory Alloys in Civil Engineering Structures - Overview, Limits and New Ideas. Materials and Structures. 38(5), 2005; p.578-592
  • [8] Castellano M.G.; Innovative Technologies for Earthquake Protection of Architectural Heritage, in International ICOMOS Congress, Bethlehem, Palestine, 2000
  • [9] Castellano M.G.; Development and Experimental Characterization of Shape Memory Alloy Devices, in Final Workshop of ISTECH Project. Ispra, Italy, 2000
  • [10] European-Commission-JRC. Shape Memory Alloy Devices for Seismic Protection of Cultural Heritage Structures, in Final Workshop of ISTECH Project. 2000. Ispra, Italy
  • [11] lndirli M.; The Demo-Intervention of the ISTECH Project: The Bell-Tower of S. Giorgio in Trignano (Italy), in Final Workshop of ISTECH Project. Ispra, Italy, 2000
  • [12] Azevedo J., Sincraian G.; Numerical Models of Masonry Structures with and without SMADs -Using the Discrete Element Method, in Final Workshop of ISTECH Project. Ispra, Italy, 2000
  • [13] DesRoches R., Smith B.; Shape Memory Alloys in Seimsic Resistant Design and Retrofit: A Critical Review of their Potential and Limitations. Journal of Earthquake Engineering. 7(3), 2003; p.1-15
  • [14] Soroushian P., Ostowari K., Nossoni A., Chowdhury H.; Repair and Strengthening of Concrete Structures through Application of Corrective Posttensioning Forces with Shape Memory Alloys. Transportation Research Record, 2001(1770); p.20-26
  • [15] Graesser E.J., Cozzarelli F.A.; Shape Memory Alloys as new Materials for Seismic Isolation. Journal of Engineering Mechanics ASCE, 117(11), 1991; p.2590-2608
  • [16] Wittig P.R., Cozzarelli F.A.; Shape Memory Structural Dampers: Material Properties, Design and Seismic Testing, in Technical Report NCEER-92-0013 (State University of New York at Buffalo), 1992
  • [17] Brite-Euram-Manside-Project, Memory Alloys for New Seismic Isolation and Energy Dissipation Devices - Final Project Workshop. 1999, Rome, Italy
  • [18] Li H.-N., Cui D., Song G., Mo Y.L.; Experimental Investigation on Self-Rehabilitation of Intelligent Concrete Beams Reinforced with Superelastic Shape Memory Alloys, in Earth and Space 2006 -Proceedings of the 10th Biennial International Conference on Engineering, Construction, and Operations in Challenging Environments. Houston, 2006
  • [19] Saiidi M.S., Sadrossadat-Zadeh M., Ayoub C., Itani A.; Pilot Study of Behavior of Concrete Beams Reinforced with Shape Memory Alloys. Journal of Materials in Civil Engineering, June 2007. 19(6); p.454-461
  • [20] Liu M., Li H., Song G., Ou J.; Investigation of Vibration Mitigation of Stay Cables Incorporated with Superelastic Shape Memory Alloy Dampers. Smart Materials and Structures, 16(6), 2007; p.2202-2213
  • [21 ] Cerda M., Boroschek R., Farias G., Moroni O., Sarrazin M.; Shaking Table Test of a Reduced-Scale Structure with Copper-Based Energy Dissipation Devices, in 8th U.S. National Conference on Earthquake Engineering. San Francisco, California, 2006
  • [22] El-Tawil S., Ortega-Rosales J.; Prestressing Concrete Using Shape Memory Alloy Tendons. ACI Structural Journal. 101(6), 2004; p.846-851
  • [23] Li H., Liu Z.-Q., Ou J.; Behavior of a Simple Concrete Beam Driven by Shape Memory Alloy Wires. Smart Materials and Structures. 15, 2006; p.1039-1046
  • [24] Denga Z., Lib Q., Suna H.; Behavior of concrete beam with embedded shape memory alloy wires. Engineering Structures, October 2006. 28(12); p.1691-1697
  • [25] Li L., Li Q., Zhang F.; Behavior of Smart Concrete Beams with Embedded Shape Memory Alloy Bundles. Journal of Intelligent Material Systems and Structures,. 18(10), 2006; p.1003-1014
  • [26] Choi E., Baik-Soon C., Young-Soo C., Tae-Hiun N.; Confining Concrete Cylinders using Martensite Shape Memory Alloy wires, in E-MRS Fall Meeting 2007, Symposium E. September 17-21, 2007. Warsaw University of Technology, Poland
  • [27] Song G., Mo Y.L., Otero K., Gu H.; Health Monitoring and Rehabilitation of a Concrete Structure using Intelligent Materials. Smart Materials and Structures. 15, 2006; p.309-314
  • [28] Czaderski C., Hahnebach B., Motavalli M.; RC beam with variable stiffness and strength. Journal of Construction and Building Materials. 20(9), 2006; p.824-833
  • [29] Hahnebach B.; Formgedächtnislegierungen für adaptive Tragwerke, Master Thesis in German, in Fakultät Bauingenieurwesen. Bauhaus-Universität Weimar and Empa Switzerland: Weimar, Germany and Dübendorf, Switzerland; 2003
  • [30] Bergamini A., Moser K., Christen R., Czaderski C.; Innerlich vorgespannter zementgebundener Baustoff und Verfahren zu seiner Herstellung, Patent Number 01935/04, in Empa Switzerland, S. Patentanmeldung, Editor, Switzerland, 2004
  • [31] Moser K.; Bergamini A., Christen R., Czaderski C.; Feasibility of Concrete Prestressed by Shape Memory Alloy Short Fibers. Materials and Structures,. 38(5), 2005; p.593-600
  • [32] Martinola G.; Rissbildung und Ablösung zementgebundener Beschichtungen auf Beton, in Institute for building materials. ETH: Zurich, 2000; p.497
  • [33] Janke L.; Czaderski C., Ruth J., Motavalli M.; Experiments on the residual load-bearing capacity of prestressed confined concrete columns. Engineering Structures. 31(10), 2009; p.2247-2256
  • [34] Dong Z., Klotz U., Leinenbach C., Bergamini A., Czaderski C., Motavalli M.; A Novel Fe-Mn-Si Shape Memory Alloy With Improved Shape Recovery Properties by VC Precipitation. Advanced Engineering Materials. 11(1-2), 2009; p.40-44
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL6-0012-0023
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.