PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Arsenic speciation in Rybnik Reservoir

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study was aimed at determining the speciation of arsenic in water, bottom sediments, and interstitial water of Rybnik Reservoir. The speciation analysis of inorganic forms of arsenic in the water and interstitial water samples was conducted by means of column technique using Dowex 1X8 anion exchanger. Arsenic speciation in the bottom sediment was carried out by means of the procedure suggested by Tessier. The concentration of arsenic was determined by HG-AAS using a Varian SpectrAA 880 spectrophotometer coupled with a VGA-77 system for hydride generation and an ETC-60 electrothermal furnace that enabled accurate temperature settings. In the surface and bottom waters of the reservoir, arsenic occurred primarily as As(V). Arsenic(V) concentration in water ranged from 0.49 μg/dm3 to 2.42 μg/dm3, and As(III) – from 0.19 μg/dm3 to 0.93 μg/dm3. Arsenic was strongly bound to the bottom sediment, predominant arsenic forms in the reservoir were sulfides and organically bound fraction. Arsenic concentration in the interstitial water was almost twice as high as that in the water of Rybnik Reservoir. The average As(III) concentration in the interstitial water was 0.52 μg/dm3, As(V) – 3.00 μg/dm3.
PL
Celem pracy było określenie specjacji arsenu w wodzie, osadach dennych i wodzie interstycjalnej Zbiornika Rybnickiego. Analizę specjacyjną nieorganicznych form arsenu w próbkach wody przeprowadzono metodą kolumnową z zastosowaniem anionitu Dowex 1X8. Specjację arsenu w osadzie dennym przeprowadzono metodą Tessiera. Zawartość arsenu oznaczano metodą HG-AAS wykorzystując spektrofotometr SpectrAA 880 firmy Varian, rozbudowany o układ do generacji wodorków VGA-77 oraz elektrotermiczny piec ETC-60 z możliwością precyzyjnego ustawienie temperatury. Zawartość As(V) stanowiła dominującą formę występowania arsenu w wodzie na obszarze całego zbiornika. Zawartość arsenu(V) w wodzie wahała się od 0.49 μg/dm3 do 2.42 μg/dm3, podczas gdy As(III) od 0.19 μg/dm3 do 0.93 μg/dm3. Arsen należał do pierwiastków silnie związanych z osadem dennym, dominującymi formami występowania arsenu w osadzie dennym Zbiornika Rybnickiego były połączenia organiczne i siarczki. Zawartość arsenu w wodzie interstycjalnej była prawie dwukrotnie większa od zawartości arsenu w wodzie Zbiornika Rybnickiego. Średnia zawartość As(III) w wodzie interstycjalnej wynosiła 0.52 μg/dm3, średnia zawartość As(V) – 3.00 μg/dm3.
Rocznik
Strony
109--116
Opis fizyczny
Bibliogr. 30 poz.
Twórcy
autor
autor
autor
  • Faculty of Energy and Environmental Engineering, The Silesian University of Technology, Konarskiego 18A, 44-100 Gliwice, Poland, krzysztof.loska@polsl.pl
Bibliografia
  • [1] Azcue J.M., Murdoch A., Rosa F., Hall G.E.M., Jackson T.A., Reynoldson T.; Trace elements in water, sediments, porewater, and biota polluted by tailings from an abandoned gold mine in British Columbia, Canada. Journal of Geochemical Exploration, vol.52, 1995; p.25-34
  • [2] Azcue J.M., Nriagu J.O.; Impact of abandoned mine tailings on the arsenic concentrations in Moira Lake, Ontario. Journal of Geochemical Exploration, vol.52, 1995; p.81-89
  • [3] Bhattacharya P., Welch A.H., Stollenwerk K.G., McLaughlin M.J., Bundschuh J., Panaullah G.; Arsenic in the environment: biology and chemistry. The Science of the Total Environment, vol.379, 2007; p.109-120
  • [4] Cáceres L., Gruttner E., Contreras R.; Water recycling in arid regions - Chilean case. Ambio, vol.21, 1992; p.138-144
  • [5] Chen H.W., Frey M.M., Clifford D., McNeill L.S., Edwards M.; Arsenic treatment considerations. Journal American Water Work Association, vol.91, 1999; p.74-85
  • [6] Golan E., Gomez-Ariza J.L., Gonzalez I., Fernandez-Caliani J.C, Morales E., Giraldez I.; Heavy metal partitioning in river sediments severely polluted by acid mine drainage in the Iberian Pyrite Belt. Applied Geochemistry, vol.18, 2003; p.409-421
  • [7] Gault A.G., Poly D.A., Lythgoea P.R., Farquhar M.L., Charnock J.M., Wogelius R.A.; Arsenic speciation in surface waters and sediments in a contaminated waterway: an IC-ICP-MS and XAS based study. Applied Geochemistry, vol.18, 2003; p.1387-1397
  • [8] Greenfield R., van Vuren J.H.J., Wepener V.; Determination of sediment quality in the Nyl River system, Limpopo Province, South Africa. Water SA, vol.33, 2007; p.693-700
  • [9] Hering J.G., Chiu V.Q.; Arsenic occurrence and speciation in municipal ground-water-based supply system. Journal of Environmental Engineering, vol.126,2000; p.471-474
  • [10] Huntsman-Mapila P., Mapila T., Letshwenyo M., Wolski P., Hemond C.; Characterization of arsenic occurrence in the water and sediments of the Okavango Delta, NW Botswana. Applied Geochemistry, vol.21, 2006; p.1376-1391
  • [11] Jain C.K., Ali I.; Arsenic: occurrence, toxicity and speciation techniques. Water Research, vol.34, 2000; p.4304-4312
  • [12] Kabata-Pendias A., Pendias H.; Biogeochemia pierwiastków śladowych (Biogeochemistry of trace elements). PWN, Warszawa, 1999 (in Polish)
  • [13] Kim M.J., Nriagu J., Haack S.; Arsenic species and chemistry in groundwater of southeast Michigan. Environmental Pollution, vol. 120, 2002; p.379-390
  • [14] Kozłowski W, Karaś M., Fiedler K.; Monografia zbiornika wodnego Rybnik (Monograph of Rybnik reservoir). WkiŁ, Warszawa, 1981 (in Polish)
  • [15] Loska K., Cebula J., Pelczar J., Wiechuła D., Kwapuliński J.; Use of enrichment, and contamination factors together with geoaccumulation indexes to evaluate the content of Cd, Cu, and Ni in the Rybnik Water Reservoir in Poland. Water, Air, Soil Pollution, vol.93,1997; p.347-365
  • [16] Loska K., Wiechuła D.; Application of principal component analysis for the estimation of source of heavy metal contamination in surface sediments from the Rybnik Reservoir. Chemosphere, vol.51, 2003; p.723-733
  • [17] Loska K., Wiechuła D.; Comparison of sample digestion procedures for the determination of arsenic in bottom sediment using hydride generation AAS. Microchimica Acta, vol.154, 2006; p.235-240
  • [18] Niedzielski P.; Microtrace metalloids speciation in lakes water samples (Poland). Environmental Monitoring and Assessment, vol.118, 2006; p.231-246
  • [19] Niedzielski P., Siepak J.; The occurrence and speciation of arsenic, antimony and selenium in ground water of Poznań city (Poland). Chemistry and Ecology, vol.21, 2005; p.241-253
  • [20] Niedzielski P., Siepak J., Grabowski K.; Microtrace level speciation of arsenic, antimony and selenium in lake waters of the Pszczewski Landscape Park, Poland. Polish Journal of Environmental Studies, vol.12, 2003; p. 213-219
  • [21] Nikolaidis N.P., Dobbs G.M., Chen J., Lackovic J.A.; Arsenic mobility in contaminated lake sediments. Environmental Pollution, vol.129, 2004; p.479-487
  • [22] Oremland R.S., Dowdle P.R., Hoeft S., Sharp J.O., Schaefer J.F., Miller L.G., Blum J.S., Smith R.L., Bloom N.S., Wallschlaeger D.; Bacterial dissimilatory reduction of arsenate and sulfate in meromictic Mono Lake, California. Geochimica et Cosmochimica Acta, vol.64,2000; p.3073-3084
  • [23] Pełechaty M., Pełechata A., Niedzielski P., Siepak J., Sobczyński T.; Analysis of the spatial and seasonal variability of inorganic species of arsenic, antimony and selenium in a shallow lake subjected to moderate anthropopressure. Polish Journal of Environmental Studies, vol.13, 2004; p.185-190
  • [24] Pettine M., Camusso M., Martinotti W.; Dissolved and particulate transport of arsenic and chromium in the Po River, Italy. The Science of the Total Environment, vol.119,1992; p.253-280
  • [25] Ruokolainen M., Pantsar-Kallio M., Haapa A., Kairesalo T.; Leaching, runoff and speciation of arsenic in a laboratory mesocosm. The Science of the Total Environment, vol.258, 2000; p.139-147
  • [26] Sahuquillo A., Rauret G., Rehnert A., Muntaua H.; Solid sample graphite furnace atomic absorption spectroscopy for supporting arsenic determination in sediments following a sequential extraction procedure. Analytica Chimica Acta, vol.476, 2003; p. 15-24
  • [27] Salomons W.; Environmental impact of metal derived from mining activities: Processes, predictions, prevention. Journal of Geochemical Exploration, vol.52, 1995; p.5-23
  • [28] Smedley P.L., Kinniburgh D.G.; A review of the source, behavior and distribution of arsenic in natural waters. Applied Geochemistry, vol.17, 2002; p.517-568
  • [29] Tessier A., Campbell P.G.C, Bisson M.; Sequential extraction procedure for the separation of particulate trace metals. Analytical Chemistry, vol. 51, 1979; p.844-851
  • [30] Thomas R.P., Ure A.M., Davidson C.M., Littlejohn D., Rauret G., Rubio R.; Three-stage sequential extraction procedure for the determination of metals in river sediments. Analytica Chimica Acta, vol.286, 1994; p.423-429
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL6-0012-0012
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.