Krystian WILK, Jarosław KOBRYŃ

ANALIZA ZREDUKOWANYCH BEZWYMIAROWYCH TEMPERATUR CHARAKTERYZUJĄCYCH PROCES SPALANIA W SILNIKU FIAT 1100 MPI

Streszczenie. W pracy przeanalizowano zmiany zredukowanych bezwymiarowych temperatur; maksymalnej i średniej, charakteryzujących proces spalania, które obliczono z modelu dwustrefowego. Wykorzystano wyniki badań laboratoryjnych silnika Fiat 1100 MPI, głównie wyniki pomiarów ciśnienia indykowanego.

ANALYSIS OF REDUCED DIMENSIONLESS TEMPERATURES CHARACTERIZING COMBUSTION PROCESS IN A CAR ENGINE FIAT 1100 MPI

Summary. In the work analysed changes of maximum and average reduced dimensionless temperatures, characterising combustion process, that were calculated from two-zone model. Laboratory test results of a Fiat 1100 MPI were used, mainly indicated pressure measures.

1. WPROWADZENIE

Najważniejszym procesem termodynamicznym zachodzącym w silniku jest proces spalania paliwa. Jest to proces bardzo skomplikowany i nadal niewystarczająco poznany.

Najczęściej za charakterystyczne parametry procesu spalania przyjmuje się ciśnienie indykowane i temperaturę spalania. Z uwagi na duże trudności pomiaru temperatury, głównie ze względu na duży stopień skomplikowania przebiegu procesu spalania, opisujące ją badania modelowe są główną podstawą analizy.

2. ANALIZOWANE POSTACIE ZREDUKOWANYCH BEZWYMIAROWYCH TEMPERATUR

Przeprowadzono analizę maksymalnej T_{bmax} i średniej T_{srd} temperatury, w jednym cyklu, które obliczono z wykorzystaniem modelu dwustrefowego.

Do analizy procesu spalania wybrano bezwymiarowe postacie temperatur, uzależniając je od rodzaju paliwa (temperatury kalorymetrycznej paliwa T_{kal}) i temperatury odniesienia T_o , które następnie określono wzorując się na pracy [2] jako:

$$\theta_{\max} = \frac{T_{b\max} - T_o}{T_{kal} - T_o} \tag{1}$$

$$\theta_{sr} = \frac{T_{srd} - T_o}{T_{kal} - T_o} \tag{2}$$

$$T_{srd} = \frac{1}{\varphi_k - \varphi_o} \int_{\varphi_o}^{\varphi_k} T_{sr}(\tau) d\varphi, \qquad (3)$$

gdzie:

 φ_o – czas początku spalania [s],

 φ_k – czas końca spalania [s],

 T_{sr} – chwilowa średnia temperatura w cylindrze [K].

Chwilowe temperatury: maksymalną i średnią obliczono z modelu dwustrefowego spalania na podstawie pomiarów ciśnienia indykowanego oraz innych parametrów charakteryzujących warunki brzegowe.

3. DWUSTREFOWY MODEL SPALANIA

W obliczeniach wykorzystano znaną postać dwustrefowego modelu spalania [1]. Model ten był już wielokrotnie wykorzystywany do oceny procesu spalania w silnikach ZI oraz silnikach ZS.

Zakłada on podział komory spalania na dwie strefy oddzielone od siebie nieskończenie cienkim frontem płomienia (rys. 1). W poszczególnych strefach wartości temperatur są jednorodne, temperatura frontu płomienia jest równa temperaturze spalin.

Rys. 1. Schemat założeń do dwustrefowego modelu spalania Fig. 1. The scheme of 2-zone model

Model tworzą równania dla elementarnego kąta $d\varphi$ obrotu wału korbowego:

- bilans energii strefy niespalonej (mieszanki):

$$\frac{dQ}{d\varphi} = \frac{dU_u}{d\varphi} + \frac{dI_u}{d\varphi} + \frac{pdV_u}{d\varphi} + \frac{dQ_{wu}}{d\varphi}$$
(4)

- bilans energii frontu spalania:

$$\frac{dI_u}{d\varphi} = \frac{dI_b}{d\varphi} + \frac{dQ}{d\varphi}$$
(5)

- bilans energii strefy spalonej (spalin):

$$\frac{dI_b}{d\varphi} = \frac{dU_b}{d\varphi} + \frac{pdV_b}{d\varphi} + \frac{dQ_{wb}}{d\varphi}$$
(6)

- termiczne równania stanu stref:

$$pV_u = m_u R_u T_u \tag{7}$$

$$V_b = m_b R_b T_b \tag{8}$$

- równania bilansu substancji i objętości:

$$m = m_u + m_b \tag{9}$$

$$V_i = V_u + V_b \tag{10}$$

- stopień wypalenia ładunku:

$$x = \frac{m_b}{m} \tag{11}$$

- stopień wyzwolenia energii chemicznej zawartej w paliwie:

p

$$y = x \left(1 - \frac{W_{db}}{W_{du}} \right) \tag{12}$$

- energia cieplna odprowadzona do ścianek komory spalania:

$$\frac{dQ_w}{d\varphi} = \frac{dQ_{wu}}{d\varphi} + \frac{dQ_{wb}}{d\varphi}, \qquad (13)$$

gdzie:

m – masa ładunku znajdującego się w cylindrze silnika [kg],

*m*_b – masa ładunku znajdującego się w strefie spalin [kg],

 m_u – masa ładunku znajdującego się w strefie mieszanki [kg],

- *I*_b pełna (fizyczna i chemiczna) entalpia w strefie spalin [J],
- I_u pełna (fizyczna i chemiczna) entalpia w strefie mieszanki [J],
- *p* ciśnienie indykowane [Pa],

Q – energia cieplna dopływająca do strefy mieszanki [J],

 Q_{wb} – energia cieplna odprowadzona do ścianek komory spalania w strefie spalin [J],

 Q_{wu} – energia cieplna odprowadzona do ścianek komory spalania w strefie mieszanki [J],

- R_b indywidualna stała gazowa spalin [J/kgK],
- R_u indywidualna stała gazowa mieszanki [J/kgK],
- T_b temperatura w strefie spalin [K],
- T_u temperatura w strefie mieszanki [K],
- U_b energia wewnętrzna strefy spalin [J],
- U_u energia wewnętrzna strefy mieszanki [J],
- V_b chwilowa objętość strefy spalin [m³],
- V_i chwilowa objętość komory spalania [m³],
- V_u chwilowa objętość strefy mieszanki [m³],
- W_{db} wartość opałowa paliwa strefy spalin [J/kg],

 W_{du} – wartość opałowa paliwa strefy mieszanki [J/kg],

x – stopień wypalenia ładunku [-],

y – stopień wyzwolenia energii chemicznej zawartej w paliwie [-].

Przyjęto adiabatyczny front płomienia, w którym nie następuje przepływ energii cieplnej między strefami dQ=0. Mieszankę i spaliny traktujemy jako gazy półdoskonałe. Energię chemiczną mieszanki i spalin (niespalonych zupełnie) wyrażono za pomocą wartości opałowej. Przyjęto brak zanieczyszczeń ładunku w cylindrze spalinami pochodzącymi z poprzedniego cyklu pracy silnika.

Pełną (fizyczną i chemiczną) entalpię i energię wewnętrzną ładunku i spalin przyjęto jako:

$$u_{u} = W_{du} + c_{vu} |_{T_{o}}^{T_{u}} (T_{u} - T_{o}) - R_{u}T_{o}$$
(14)

$$u_{b} = W_{db} + c_{vb} |_{T_{o}}^{T_{b}} (T_{b} - T_{o}) - R_{b}T_{o}$$
(15)

$$i_{u} = W_{du} + c_{pu} |_{T_{o}}^{T_{u}} (T_{u} - T_{o})$$
(16)

$$i_{b} = W_{db} + c_{pb} |_{T_{o}}^{T_{b}} (T_{b} - T_{o}), \qquad (17)$$

gdzie:

- c_{pb} właściwa pojemność cieplna (ciepło właściwe) przy stałym ciśnieniu strefy spalin [J/kgK],
- c_{pu} właściwa pojemność cieplna (ciepło właściwe) przy stałym ciśnieniu strefy mieszanki [J/kgK],
- cvb właściwa pojemność cieplna (ciepło właściwe) przy stałej objętości strefy spalin [J/kgK],
- cvu właściwa pojemność cieplna (ciepło właściwe) przy stałej objętości strefy mieszanki [J/kgK],

*i*_b – pełna (fizyczna i chemiczna) entalpia właściwa strefy spalin [J/kg],

- *i*_u pełna (fizyczna i chemiczna) entalpia właściwa strefy mieszanki [J/kg],
- To-temperatura odniesienia [K],
- ub energia wewnętrzna właściwa strefy spalin [J/kg],
- u_u energia wewnętrzna właściwa strefy mieszanki [J/kg].

Wyznaczono różniczki:

$$dU_{u} = [c_{vu}|_{T_{o}}^{T_{u}} dT_{u} + (T_{u} - T_{o})dc_{vu}](1 - x)m - [W_{du} + c_{vu}|_{T_{o}}^{T_{u}} (T_{u} - T_{o}) - R_{u}T_{o}]mdx$$
(18)

$$dU_{b} = [c_{vb}|_{T_{o}}^{T_{b}} dT_{b} + (T_{b} - T_{o})dc_{vb} + dW_{db}]xm + [W_{db} + c_{vb}|_{T_{o}}^{T_{b}} (T_{b} - T_{o}) - R_{b}T_{o}]mdx$$
(19)

$$dI_{u} = [W_{du} + c_{pu}|_{T_{o}}^{T_{u}} (T_{u} - T_{o})](-mdx)$$
⁽²⁰⁾

$$dI_{b} = [W_{db} + c_{pb}|_{T_{a}}^{T_{b}} (T_{b} - T_{o})](mdx)$$
(21)

W celu uproszczenia dalszych przekształceń wprowadzono wielkości pomocnicze:

$$a_1 = \frac{pV}{m} \tag{22}$$

$$a_2 = R_b T_b - R_u T_u \tag{23}$$

$$a_3 = \frac{a_1}{a_2} \tag{24}$$

$$a_4 = \frac{R_u T_u}{a_2} \tag{25}$$

$$x = a_3 - a_4 \tag{26}$$

$$a_5 = \frac{R_b T_b}{a_2} \tag{27}$$

$$a_{6} = W_{du} - W_{db} + c_{vu} |_{T_{o}}^{T_{u}} (T_{u} - T_{o}) - c_{vb} |_{T_{o}}^{T_{b}} (T_{b} - T_{o}) + (R_{b} - R_{u})T_{o}$$
(28)

$$a_{7} = (1 - a_{3} + a_{4})(a_{4}a_{6} + c_{vu}|_{T_{o}}^{T_{u}} T_{u})$$
(29)

$$a_{8} = a_{3}a_{6}\left(\frac{dp}{p}\right) - (a_{3} - a_{4})(a_{5}a_{6} + c_{vb}|_{T_{o}}^{T_{b}} T_{b})\frac{dT_{b}}{T_{b}} - (a_{3} - a_{4})dW_{db} - (a_{1} - a_{3}a_{6})\frac{dV}{V} +$$
(30)

$$-\frac{dQ_z}{G} - (a_3 - a_4)(T_b - T_o)dc_{vb}$$

$$= dv_{vb} - \left(\frac{dp}{dV} + \frac{dV}{dV}\right) - \left(1 - v_{vb} + v_{vb}\right) = \frac{dT_u}{dT_b} - \left(1 - v_{vb} + v_{vb}\right) = \frac{dT_u}{dT_b}$$
(21)

$$a_{9} = dx = a_{3} \left(\frac{dp}{p} + \frac{dV}{V} \right) - (1 - a_{3} + a_{4})a_{4} \frac{dT_{u}}{T_{u}} - (a_{3} - a_{4})a_{5} \frac{dT_{b}}{T_{b}},$$
(31)

a następnie po przekształceniach określono:

$$dI_{u} = [W_{du} + (c_{vu}|_{T_{o}}^{T_{u}} + R_{u})(T_{u} - T_{o})](ma_{9})$$
(32)

$$dI_{b} = [W_{db} + c_{pb}|_{T_{o}}^{T_{b}} (T_{b} - T_{o})](ma_{9})$$
(33)

$$dT_u = \frac{a_8}{a_7} T_u \tag{34}$$

$$dT_b = \left(\frac{dp}{p} - \frac{dW_{db}}{R_b T_b} - \frac{dQ_z}{pV}\right) \frac{R_b T_b}{c_{pb} \mid_{T_o}^{T_b}}$$
(35)

Średnią wartość temperatury w cylindrze przyjęto jako średnią ważoną z energii wewnętrznej:

$$T_{sr} = \frac{(1-x)c_{vu} |_{T_o}^{T_u} T_u + xc_{vb} |_{T_o}^{T_b} T_b}{(1-x)c_{vu} |_{T_o}^{T_u} + xc_{vb} |_{T_o}^{T_b}}$$
(36)

4. OBIEKT BADAŃ

W analizie wykorzystano wyniki pomiarów i obliczeń silnika FIAT 1100 MPI, którego badania laboratoryjne zostały wykonane na stanowisku hamowni w laboratorium Akademii Techniczno – Humanistycznej w Bielsku – Białej.

Zakres badań obejmował:

A. Parametry podstawowe - nastawiane

- prędkość obrotowa (1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, 5500 obr/min),

- obciążenie silnika (100%, 75%, 50%, 25% *M*_{omax}).
- B. Parametry mierzone

- ciśnienie indykowane (co 0,5° OWK),

- moment obrotowy na wale korbowym,

- moc efektywną, godzinowe zużycie paliwa,

- analiza spalin przed katalizatorem: λ , (CO, CO₂, O₂, HC, NO_x),
- temperatura spalin w kolektorze wylotowym,
- godzinowy wydatek strumienia powietrza,

- temperatura i ciśnienie otoczenia, wilgotność powietrza.

Do dalszej analizy posłużyły zatem wyniki pomiarów uzyskane podczas badań różnych stanów pracy silnika.

5. WYNIKI BADAŃ I ANALIZ

Przykładowe wyniki przedstawiono w formie wykresów. Na rysunku 2 pokazano wyniki dla charakterystyki zewnętrznej silnika. Kolejne rysunki (3, 4, 5) przedstawiają wyniki dla coraz to mniejszych obciążeń silnika, realizowanego jako odpowiednio 75, 50 i 25% maksymalnego momentu obrotowego.

Rys. 2. Wyniki obliczeń zredukowanych bezwymiarowych temperatur dla charakterystyki zewnętrznej silnika Fig. 2. Calculations results of dimensionless temperatures for 100% Mo_{max}

Rys. 3. Wyniki obliczeń zredukowanych bezwymiarowych temperatur dla obciążenia silnika 75% Mo_{max} Fig. 3. Calculations results of dimensionless temperatures for 75% Mo_{max}

Rys. 4. Wyniki obliczeń zredukowanych bezwymiarowych temperatur dla obciążenia silnika 50% Mo_{max} Fig. 4. Calculations results of dimensionless temperatures for 50% Mo_{max}

Rys. 5. Wyniki obliczeń zredukowanych bezwymiarowych temperatur dla obciążenia silnika 25% Mo_{max} Fig. 5. Calculations results of dimensionless temperatures for 25% Mo_{max}

Na kolejnych wykresach przedstawiono wyniki obliczeń w funkcji obciążenia silnika. Przykładowo przestawiono wyniki dla prędkości obrotowych: 2500 obr/min (rys. 6), 3500 obr/min (rys. 7) i 4500 obr/min (rys. 8).


```
Fig. 6. Calculations results of dimensionless temperatures for different loads by n = 2500 obr/min
```


Fig. 7. Calculations results of dimensionless temperatures for different loads by n = 3500 obr/min

Rys. 8. Wyniki obliczeń zredukowanych bezwymiarowych temperatur dla różnych obciążeń przy prędkości obrotowej 4500 obr/min

Fig. 8. Calculations results of dimensionless temperatures for different loads by n = 4500 obr/min

6. PODSUMOWANIE

- Obydwie temperatury wykazały wzrost wartości wraz ze wzrostem prędkości obrotowych oraz spadek wartości ze wzrostem obciążenia, co jest zgodne z teorią procesów spalania paliwa w tłokowych silnikach spalinowych.
- W większości przypadków zredukowana bezwymiarowa średnia temperatura spalania wykazała mniejszy wzrost wartości ze wzrostem prędkości obrotowych niż zredukowana bezwymiarowa maksymalna temperatura spalania.
- Podczas analizy zauważono wystąpienie kilku anomalii, np. przy n = 2000 obr/min dla obciążenia silnika, realizowanego jako 75% Mo_{max} (rys. 3) oraz dla obciążenia silnika Mo_{max} (rys. 5). Może to być wynikiem błędów pomiarowych lub nawet świadczyć o zakłóceniu procesu spalania w tym silniku przy n = 2000 obr/min, spowodowanej wadliwą regulacją lub wadą konstrukcyjną silnika. Jednak, aby to jednoznacznie ocenić, należy wykonać dużo więcej badań na stanowisku hamowni silnikowej.

Bibliografia

- 1. Wilk K.: Równania dwustrefowego modelu procesu spalania w silniku. Praca niepublikowana. Zakład Eksploatacji Pojazdów, Instytut Transportu, Wydział Inżynierii Materiałowej, Metalurgii i Transportu, Politechnika Śląska.
- 2. Wilk K.: Badania dyfuzyjnych palników gazowych. Zeszyty Naukowe Politechniki Śląskiej, s. Energetyka, z. 785, Gliwice 1984.
- 3. Szargut J.: Termodynamika techniczna. PWN, Warszawa 1991.

Recenzent: Dr hab. inż. Zdzisław Stelmasiak, prof. ATH w Bielsku-Białej

Praca wykonana w ramach BK-248/RT1/2008