Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Hybrid systems dynamics
Konferencja
XVI Krajowa Konferencja Automatyzacji Procesów Dyskretnych, (2008, Gliwice, Polska)
Języki publikacji
Abstrakty
Badanie dynamiki układów hybrydowych jest źródłem wielu interesujących i trudnych problemów matematycznych. Celem tej pracy jest zreferowanie postępów w badaniach własności dynamiki układów hybrydowych ze szczególnym uwzględnieniem problemu stabilności. Z problemem stabilności ściśle związane są problemy eksponencjalnego wzrostu i twierdzenia odwrotne do twierdzenia Lapunowa. Oba te zagadnienia zostaną zreferowane. W pracy zostanie zasygnalizowanych również kilka otwartych problemów.
The study of the hybrid systems dynamics gives rise to a number of interesting and challenging mathematical problems. The objective of this paper is to review progress made in research of hybrid systems dynamics. We concentrate our attention on stability. Closely related to the concept of stability are the notations of exponential growth and converse Lyapunov theorems, both of which are discussed. We also point out some problems that remain open.
Rocznik
Tom
Strony
31--36
Opis fizyczny
bibliogr. 17 poz.
Twórcy
autor
- Instytut Automatyki Politechniki Śląskiej, Gliwice, ul. Akademicka 2 tel.: (032) 237-10-93, adam.czornik@polsl.pl
Bibliografia
- Johansson K. H., Lygerós J. i Sastry S.: Modeling hybrid systems, in H. Unbehauen, Ed., Encyclopedia of Life Support Systems (EOLSS), 2004.
- Hespanha J.: Stochastic Hybrid Systems: Application to Communication Networks (Extended Version). Technical Report, Dept. of Electrical and Computer Eng., University of California, Jan. 2004.
- de Jong H., Geiselmann J., Bart G., Hernandez C. and Page M.: Qualitative simulation of the initiation of sporulation in Bacillus Subtilis, Bulletin of Mathematical Biology, 66 (2004), p. 261-299.
- de Jong H., Hernandez C, Page M., Sari T. and Geiselmann J.: Qualitative simulation of genetic regulatory networks using piecewise-linear models, Bulletin of Mathematical Biology, 66 (2004), p. 301-340.
- Chase C, Serrano J., and Ramadge P.: Periodicity and chaos from switched on systems: contrasting examples of discretely controlled continuous systems, IEEE Transactions on Automatic Control, 38 (1993), p. 70-83.
- Feron E.: Quadratic stabilizability of switched systems via state and output feedback, Tech. Report CIS-P-468, Center for Intelligent Control Systems, MIT, 1996.
- Leoparo K. A., Aslanis J. T. i Hajek O.: Analysis of switching linear systems in the plane, J. Optim. Theory Appl., vol. 52, p. 395-427,1987
- Liu Y.: Switching observer design for uncertain nonlinear systems, IEEE Trans. Automat. Contr., vol. 42, p. 1699-1703, 1997.
- Jirstrand M.: On switched polynomial systems and exact output tracing, Tech. Report LiTH-ISY-R-2044, Linkoping University, Sweden, 2004.
- Wicks M. A., Peleties P., and DeCarlo R.: Construction of piecewise Lyapunov functions for stabilising switched systems, in Proc. 33rd Conference on Decision and Control, Lake Buena Vista, Florida, 1994, p. 3492-3497.
- Czornik A.: On the generalized spectral subradius, Linear Algebra and its Applications 407: 242-248 SEP 15 2005
- Molczanov A. P., Pyatnistskiy E. S.: Criteria of asymptotic stability of differential and difference inclusions encountered in control theory, Systems & Control Letters, 13 (1989), p. 59-64.
- Shorten R. N., Narendra K. S.: On the stability and existence of common Lyapunov functions for linear stable switching systems, in proceedings 37th Conference on Decision and Control, Tampa, Florida, 1998.
- Agrachev A. A., Liberzon D.: Lie-algebraic stability criteria for switched systems, SIAM Journal of Control and Optimization, 40 (2001), p. 253-269.
- Shorten R. N., Narendra K. S.: Necessary and sufficient conditions for the existence of a common quadratic Lyapunov function for a finite number of stable second order linear time-invariant systems, International Journal of Adaptive Control and Signal Processing, 16 (2003), p. 709-728.
- Polahski A.: On absolute stability analysis by polyhedral Lyapunov functions, Automatica, 36 (2000), p. 573-578.
- Hespanha J. and Morse S.: Stability of switched systems with average dwell-time, in proceedings of 38th Conference on Decision and Control, Phoenix, 1999.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL5-0020-0004