PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Coherent structure dynamics and sediment particle motion around a cylindrical pier in developing scour holes

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Recent investigations on the dynamics of the turbulent horseshoe vortex system (THV) around cylindrical piers have shown that the rich coherent dynamics of the vortical structures is dominated by lowfrequency bimodal fluctuations of the velocity field. In spite of these advances, many questions remain regarding the changes of the flow and sediment transport dynamics as scour progresses. In this investigation we carry out laboratory experiments to register the development of the scour hole around a cylindrical pier in a fine-sand bed (d50 = 0.36 mm). We use the bathymetry measured in the experiment to simulate the flow field employing the detached-eddy simulation approach (DES), which has shown to resolve most of the turbulent stresses around surface-mounted obstacles. From these simulations we compare the dynamics of the THV to the flat-bed case, and analyze the effects on particle transport and sediment flux using the Lagrangian particle model of Escauriaza and Sotiropoulos (2011b) to study the impact of the changes of the flow on the sediment dynamics.
Czasopismo
Rocznik
Strony
1689--1719
Opis fizyczny
Bibliogr. 41 poz.
Twórcy
autor
autor
autor
autor
  • Departamento de Ingenieria Civil, Universidad de Concepcion, Concepcion, ChileIngenieria Civil, Universidad de Concepción, Concepción, Chile, cescauri@ing.puc.cl
Bibliografia
  • Bagnold, R.A. (1956), The flow of cohesionless grains in fluids, Phil. Trans. Roy. Soc. Lond. A 249, 964, 235-297, DOI: 10.1098/rsta.1956.0020.
  • Bressan, F., F. Ballio, and V. Armenio (2011), Turbulence around a scoured bridge abutment, J. Turbul. 12, N3, DOI: 10.1080/14685248.2010.534797.
  • Dargahi, B. (1989), The turbulent flow field around a circular cylinder, Exp. Fluids 8, 1-2, 1-12, DOI: 10.1007/BF00203058.
  • Dargahi, B. (1990), Controlling mechanism of local scouring, J. Hydraul. Eng. 116, 10, 1197-1214, DOI: 10.1061/(ASCE)0733-9429(1990)116:10(1197).
  • Devenport, W.J., and R.L. Simpson (1990), Time-dependent and time-averaged turbulence structure near the nose of a wing-body junction, J. Fluid Mech. 210, 23-55, DOI: 10.1017/S0022112090001215.
  • Diab, R., O. Link, and U. Zanke (2010), Geometry of developing and equilibrium scour holes at bridge piers in gravel, Can. J. Civil Eng. 37, 4, 544-552, DOI: 10.1139/L09-176.
  • Escauriaza, C., and F. Sotiropoulos (2009), Trapping and sedimentation of inertial particles in three- dimensional flows in a cylindrical container with exactly counter-rotating lids, J. Fluid Mech. 641, 169-193, DOI: 10.1017/S0022112009991534.
  • Escauriaza, C., and F. Sotiropoulos (2011a), Initial stages of erosion and bed form development in a turbulent flow around a cylindrical pier, J. Geophys. Res. 116, F03007, DOI: 10.1029/2010JF001749.
  • Escauriaza, C., and F. Sotiropoulos (2011b), Lagrangian model of bed-load transport in turbulent junction flows, J. Fluid Mech. 666, 36-76, DOI: 10.1017/S0022112010004192.
  • Escauriaza, C., and F. Sotiropoulos (2011c), Reynolds number effects on the coherent dynamics of the turbulent horseshoe vortex system, Flow Turbul. Combust. 86, 2, 231-262, DOI: 10.1007/s10494-010-9315-y.
  • Gobert, C., O. Link, M. Manhart, and U. Zanke (2010), Discussion of “Coherent structures in the flow field around a circular cylinder with scour hole” by G. Kirkil, S.G. Constaninescu, and R. Ettema, J. Hydraul. Eng. 136, 1, 82-84, DOI: 10.1061/(ASCE)HY.1943-7900.0000032.
  • Hunt, J.C.R., A.A. Wray, and P. Moin (1988), Eddies, streams, and convergence zones in turbulent flows. In: Proc. 1988 Summer Program, Center for Turbulence Research, NASA Ames/Stanford University, 193-208.
  • Kirkil, G., G. Constantinescu, and R. Ettema (2008), Coherent structures in the flow field around a circular cylinder with scour hole, J. Hydraul. Eng. 134, 5, 572-587, DOI: 10.1061/(ASCE)0733-9429(2008)134:5(572).
  • Kirkil, G., G. Constantinescu, and R. Ettema (2009), Detached eddy simulation investigation of turbulence at a circular pier with scour hole, J. Hydraul. Eng. 135, 11, 888-901, DOI: 10.1061/(ASCE)HY.1943-7900.0000101.
  • Koken, M., and G. Constantinescu (2008a), An investigation of the flow and scour mechanisms around isolated spur dikes in a shallow open channel: 1. Conditions corresponding to the initiation of the erosion and deposition process, Water Resour. Res. 44, W08406, DOI: 10.1029/2007WR006489.
  • Koken, M., and G. Constantinescu (2008b), An investigation of the flow and scour mechanisms around isolated spur dikes in a shallow open channel: 2. Conditions corresponding to the final stages of the erosion and deposition process, Water Resour. Res. 44, W08407, DOI: 10.1029/2007WR006491.
  • Kothyari, U.C., R.J. Garde, and K.G. Ranga Raju (1992), Temporal variation of scour around circular bridge piers, J. Hydraul. Eng. 118, 8, 1091-1106, DOI: 10.1061/(ASCE)0733-9429(1992)118:8(1091).
  • Lee, S., and T. Sturm (2009), Effect of sediment size scaling on physical modeling of bridge pier scour, J. Hydraul. Eng. 135, 10, 793-802, DOI: 10.1061/(ASCE)HY.1943-7900.0000091.
  • Link, O. (2008), Medición del desarrollo espacio-temporal de la socavación local alrededor de un cilindro hincado en un lecho de arena gruesa, Ing. Hidrául. Méx. 23, 2, 50-74 (in Spanish).
  • Link, O., F. Pfleger, and U. Zanke (2008), Characteristics of developing scour-holes at a sand-embedded cylinder, Int. J. Sediment Res. 23, 3, 258-266, DOI: 10.1016/S1001-6279(08)60023-2.
  • Melville, B.W., and S.E. Coleman (2000), Bridge Scour, Water Resources Publications LLC, Highlands Ranch.
  • Melville, B., and A. Sutherland (1988), Design method for local scour at bridge piers, J. Hydraul. Eng. 114, 10, 1210-1226, DOI: 10.1061/(ASCE)0733-9429(1988)114:10(1210).
  • Oliveto, G., and W.H. Hager (2002), Temporal evolution of clear-water pier and abutment scour, J. Hydraul. Eng. 128, 9, 811-820, DOI: 10.1061/(ASCE)0733-9429(2002)128:9(811).
  • Oliveto, G., and W.H. Hager (2005), Further results to time-dependent local scour at bridge elements, J. Hydraul. Eng. 131, 2, 97-105, DOI: 10.1061/(ASCE)0733-9429(2005)131:2(97).
  • Paik, J., F. Sotiropoulos, and M.J. Sale (2005), Numerical simulation of swirling flow in complex hydroturbine draft tube using unsteady statistical turbulence models, J. Hydraul. Eng. 131, 6, 441-456, DOI: 10.1061/(ASCE)0733-9429(2005)131:6(441).
  • Paik, J., C. Escauriaza, and F. Sotiropoulos (2007), On the bimodal dynamics of the turbulent horseshoe vortex system in a wing-body junction, Phys. Fluids 19, 4, 045107, DOI: 10.1063/1.2716813.
  • Paik, J., C. Escauriaza, and F. Sotiropoulos (2010), Coherent structure dynamics in turbulent flows past in-stream structures: Some insights gained via numerical simulation, J. Hydraul. Eng. 136, 12, 981-993, DOI: 10.1061/(ASCE)HY.1943-7900.0000089.
  • Pfleger, F., C. Rapp, and M. Manhart (2010), Experimental investigation on the sediment movement in the vicinity of a cylindrical bridge pier. In: Int. Conf. on Fluvial Hydraulics River Flow 2010, 1701-1708.
  • Radice, A., and C.K. Tran (2012), Study of sediment motion in scour hole of a circular pier, J. Hydraul. Res. 50, 1, 44-51, DOI: 10.1080/00221686.2011.641764.
  • Richardson, E.V., and S.R. Davis (2001), Evaluating Scour at Bridges, 4th ed., Federal Highway Administration, U.S. Department of Transportation, Washington D.C.
  • Roulund, A., B.M. Sumer, J. Fredsøe, and J. Michelsen (2005), Numerical and experimental investigation of flow and scour around a circular pile, J. Fluid Mech. 534, 351-401, DOI: 10.1017/S0022112005004507.
  • Schmeeckle, M.W., J.M. Nelson, J. Pitlick, and J.P. Bennett (2001), Interparticle collision of natural sediment grains in water, Water Resour. Res. 37, 9, 2377-2391, DOI: 10.1029/2001WR000531.
  • Simpson, R.L. (2001), Junction flows, Ann. Rev. Fluid Mech. 33, 415-443, DOI: 10.1146/annurev.fluid.33.1.415.
  • Sotiropoulos, F., and S. Abdallah (1992), A primitive variable method for the solution of three-dimensional incompressible viscous flows, J. Comput. Phys. 103, 2, 336-349, DOI: 10.1016/0021-9991(92)90405-N.
  • Sotiropoulos, F., and G. Constantinescu (1997), Pressure-based residual smoothing operators for multistage pseudocompressibility algorithms, J. Comput. Phys. 133, 1, 129-145, DOI: 10.1006/jcph.1997.5662.
  • Spalart, P.R. (2009), Detached-eddy simulation, Ann. Rev. Fluid Mech. 41, 181-202, DOI: 10.1146/annurev.fluid.010908.165130.
  • Spalart, P.R., and S.R. Allmaras (1994), A one-equation turbulence model for aerodynamic flows, Rech. Aerosp. 1, 5-21.
  • Spalart, P.R., W.H. Jou,, M. Strelets, and S.R. Allmaras (1997), Comments on the feasibility of LES for wings and on a hybrid RANS/LES approach. In: C. Liu and Z. Liu (eds.), Advances in DNS/LES, Greyden Press, Columbus.
  • Teruzzi, A., F. Ballio, and V. Armenio (2009), Turbulent stresses at the bottom surface near an abutment: Laboratory-scale numerical experiment, J. Hydraul. Eng. 135, 2, 106-117, DOI: 10.1061/(ASCE)0733-9429(2009) 135:2(106).
  • Yanmaz, A.M., and H.D. Altinbilek (1991), Study of time-dependent local scour around bridge piers, J. Hydraul. Eng. 117, 10, 1247-1268, DOI: 10.1061/(ASCE)0733-9429(1991)117:10(1247).
  • Yanmaz, A., and O. Köse (2007), Surface characteristics of scouring at bridge elements, Turkish J. Eng. Env. Sci. 31, 2, 127-134.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL4-0019-0006
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.