PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

3D numerical simulation of particle-particle collisions in saltation mode near stream beds

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The importance of particle-particle collisions in sediment saltation in the bed-load layer is analyzed herein by means of numerical simulation. The particle saltation theoretical/numerical model follows a Lagrangian approach, and addresses the motion of sediment particles in an open channel flow described by a logarithmic velocity profile. The model is validated with experimental data obtained from the literature. In order to evaluate the importance of the phenomenon, simulations with and without particle-particle collisions were carried out. Results for two different sediment concentrations are presented, namely 0.13% and 2.33%. For each concentration of particles, three different flow intensities were considered, and trajectories of two different particle sizes, within the sand range were computed. Changes in particle rotation, particle velocity, and angle of trajectory before and after particle-particle collisions appear to be relatively important at lower shear stresses, whereas they decrease in significance with increasing flow intensities. Analyses of the evolution in time of the second order moment of particle location suggest that inter-particle collisions introduce transverse diffusion in saltating particles in the span-wise direction.
Czasopismo
Rocznik
Strony
1661--1688
Opis fizyczny
Bibliogr. 42 poz.
Twórcy
autor
Bibliografia
  • Bialik, R.J. (2011), Particle-particle collision in Lagrangian modelling of saltating grains, J. Hydraul. Res. 49, 23-31, DOI: 10.1080/00221686.2010.543778.
  • Bialik, R.J., V.I. Nikora, and P.M. Rowiński (2012), 3D Lagrangian modelling of saltating particles diffusion in turbulent water flow, Acta Geophys. 60, 6, 1639-1660, DOI: 10.2478/s11600-012-0003-2.
  • Bombardelli, F.A., and H. Chanson (2009), Progress in the observation and modeling of turbulent multi-phase flows, Environ. Fluid Mech. 9, 121-123, DOI: 10.1007/s10652-009-9125-8.
  • Bombardelli, F.A., and P.A. Moreno (2012), Exchange at the bed sediments-water column interface. In: C. Gualtieri, and D.T. Mihailovic (eds.), Fluid Mechanics of Environmental Interfaces, 2nd ed., Taylor & Francis, London.
  • Bombardelli, F.A., A.E. González, and Y.I. Niño (2008), Computation of the particle Basset force with a fractional-derivative approach, J. Hydraul. Eng. ASCE 134, 10, 1513-1520, DOI: 10.1061/(ASCE)0733-9429(2008)134:10(1513).
  • Bombardelli, F.A., A.E. González, and P.A. Moreno (2010), Numerical simulation of spheres moving an colliding close to bed streams, with a complete characterization of turbulence. In: A. Dittrich, K. Koll, J. Aberle, and P. Geisenhainer (eds.), Proc. Int. Conference on Fluvial Hydraulics River Flow 2010, Braunschwig, Germany, Bundesanstalt für Wasserbau, Karlsruhe, 777-784.
  • Brennen, C. (2009), Fundamentals of Multiphase Flow, Cambridge University Press, New York, DOI: 10.1002/cjce.5450830515.
  • Chung, T.J. (2002), Computational Fluid Dynamics, Cambridge University Press, Cambridge.
  • Crowe, C., J. Schwarzkopf, M. Sommerfeld, and Y. Tsuji (2011), Multiphase Flows with Droplets and Particles, 2nd ed., CRC Press, Boca Raton, FL, DOI: 10.1201/b11103.
  • Drake, T.G., R.L. Shreve, W.E. Dietrich, P.J. Whiting, and L.B. Leopold (1998), Bedload transport of fine gravel observed by motion-picture photography, J. Fluid Mech. 192, 193-217, DOI: 10.1017/S0022112088001831.
  • García, M.H. (ed.), (2008), Sedimentation Engineering: Processes, Measurements, Modelling, and Practice, ASCE Manuals and Reports on Engineering Practice, No. 110, American Society of Civil Engineers, Reston, DOI: 10.1061/40856(200)94.
  • García, M.H., and Y. Niño (1992), Lagrangian description of beadload transport by saltating particles. In: J.T. Kuo and G.F. Lin (eds.), Stochastic Hydraulics: Proc. 6th IAHR International Symposium, 18-20 May 1992, Taipei, IAHR, 259-266.
  • González, A.E. (2008), Coupled numerical modelling of sediment transport near the bed using a two-phase flow approach, Ph.D. Thesis, University of California, Davis.
  • Graf, W.H. (1971), The Hydraulics of Sediment Transport, McGraw-Hill, New York.
  • Harada, E., and H. Gotoh (2006), Influence of sand shape to vertical sorting under uniform flow condition. In: R.M.L. Ferreira et al. (eds.), Proc. Int. Conference on Fluvial Hydraulics River Flow, 6-8 September 2006, Lisbon, Portugal, Taylor & Francis, 853-858.
  • Isaacson, E., and H.B. Keller (1966), Analysis of Numerical Methods, Dover Publications, New York.
  • Jha, S.K., and F.A. Bombardelli (2010), Toward two-phase flow modeling of nondilute sediment transport in open channel, J. Geophys. Res. 115, F03015, DOI: 10.1029/2009JF001347.
  • Julien, P.Y. (2010), Erosion and Sedimentation, 2nd ed., Cambridge University Press, Cambridge.
  • Lee, H.Y., and I.S. Hsu (1994), Investigation of saltating particle motions, J. Hydraul. Eng. ASCE 120, 831-845, DOI: 10.1061/(ASCE)0733-9429 (1994)120:7(831)
  • Lee, H.Y., J.Y. You, and Y.T. Lin (2002), Continuous saltating process of multiple sediment particles, J. Hydraul. Eng. ASCE 128, 4, 443-450, DOI: 10.1061/(ASCE)0733-9429(2002)128:4(443).
  • Lee, H.Y., Y.T. Lin, J.Y. You, and H.W. Wang (2006), On three-dimensional continuous saltating process of sediment particles near the channel bed, J. Hydraul. Res. 44, 3, 374-389, DOI: 10.1080/00221686.2006.9521689.
  • Lin, S.-Y., Y.-H. Chin, J.-J. Hu, and Y.-C. Chen (2011), A pressure correction method for fluid-particle interaction flow: Direct-forcing method and sedimentation flow, Int. J. Numer. Meth. Fluids 67, 12, 1771-1798, DOI: 10.1002/fld.2442.
  • Lin, S.-Y., Y.-H. Chin, C.-M. Wu, J.-F. Lin, and Y.-C. Chen (2012), A pressure correction-volume of fluid method for simulation of two-phase flows, Int. J. Numer. Meth. Fluids 68, 2, 181-195, DOI: 10.1002/fld.2500.
  • Lukerchenko, N., Z. Chara, and P. Vlasak (2006), 2D Numerical model of particlebed collision in fluid particle flows over bed, J. Hydraul. Res. 44, 1, 70-78, DOI: 10.1080/00221686.2006.9521662.
  • Lukerchenko, N., S. Piatsevich, Z. Chara, and P. Vlasak (2009), 3D Numerical model of the spherical particle saltation in a channel with a rough fixed bed, J. Hydrol. Hydromech. 57, 2, 100-112, DOI: 10.2478/v10098-009-0009-x.
  • Martin, R.L., D.J. Jerolmack, and R. Schumer (2012), The physical basis for anomalous diffusion in bed load transport, J. Geophys. Res. 117, F01018, DOI: 10.1029/2011JF002075.
  • Moreno, P.A., F.A. Bombardelli, A.E. González, and V.M. Calo (2011), Three dimensional model for particle saltation close to stream beds, including a detailed description of the particle interaction with turbulence and interparticle collisions. In: Proc. EWRI/ASCE World Environmental and Water Resources Congress 2011, Palm Springs, CA, USA, 2075-2084.
  • Nikora, V., J. Heald, D. Goring, and I. McEwan (2001), Diffusion of saltating particles in unidirectional water flow over rough granular bed, J. Phys. A 34, 50, L743-L749, DOI: 10.1088/0305-4470/34/50/103.
  • Nikora, V., H. Habersack, T. Huber, and I. McEwan (2002), On bed particle diffusion in gravel bed flows under weak bed load transport, Water Resour. Res. 31, 6, 1081, DOI: 10.1029/2001WR000513.
  • Niño, Y., and M.H. García (1994), Gravel saltation. 2. Modeling, Water Resour. Res. 30, 6, 1915-1924, DOI: 10.1029/94WR00534.
  • Niño, Y., and M.H. García (1998a), Experiments on saltation of sand in water, J. Hydraul. Eng. ASCE 124, 10, 1014-1025, DOI: 10.1061/(ASCE)0733-9429(1998)124:10(1014).
  • Niño, Y., and M.H. García (1998b), Using Lagrangian particle saltation observations for bedload sediment transport modelling, Hydrol. Process. 12, 8, 1197-1218, DOI: 10.1002/(SICI)1099-1085(19980630)12:8<1197::AID-HYP612>3.0.CO;2-U.
  • Parker, G. (2004), 1D Sediment Transport Morphodynamics with Applications to Rivers and Turbidity Currents, Natl. Cent. for Earth Surf. Dyn., Minneapolis, MN (e-book, available at http://hydrolab.illinois.edu/people/parkerg/).
  • Radice, A., and F. Ballio (2008), Double-average characteristics of sediment motion in one-dimensional bed load, Acta Geophys. 56, 3, 654-668, DOI: 10.2478/s11600-008-0015-0.
  • Radice, A., F. Ballio, and V.I. Nikora (2009), On statistical properties of bed load sediment concentration, Water Resour. Res. 45, W06501, DOI: 10.1029/2008WR007192.
  • Schmeeckle, M.W., and J.M. Nelson (2003), Direct numerical simulation of bedload transport using a local, dynamic boundary condition, Sedimentology 50, 2, 279-301, DOI: 10.1046/j.1365-3091.2003.00555.x.
  • Tanaka, T., and Y. Tsuji (1991), Numerical simulation of gas-solid two-phase flow in a vertical pipe: On the effect of inter-particle collision. In: D. Stock, Y. Tsuji, J. Jurewicz, M. Reeks, and M. Gautam (eds.), Gas-Solid Flows, Fluid Engineering Division, Vol. 121, American Society of Mechanical Engineers, 123-128.
  • van Hinsberg, M.A.T., J.H.M.T. Boonkkamp, and H.J.H. Clercx (2011), An efficient, second order method for the approximation of the Basset history force, J. Comput. Phys. 230, 4, 1465-1478, DOI: 10.1016/j.jcp.2010.11.014.
  • Wiberg, P.L., and J.D. Smith (1985), A theoretical model for saltating grains in water, J. Geophys. Res. 90, C4, 7341-7354, DOI: 10.1029/JC090iC04p07341.
  • Yalin, M.S. (1977), Mechanics of Sediment Transport, 2nd ed., Pergamon Press, Oxford.
  • Yamamoto, Y., M. Potthoff, T. Tanaka, T. Kajishima, and Y. Tsuji (2001), Largeeddy simulation of turbulent gas-particle flow in a vertical channel: effect of considering inter-particle collisions, J. Fluid Mech. 442, 303-334, DOI: 10.1017/S0022112001005092.
  • Yen, B.C. (1992), Sediment fall velocity in oscillating flow, Water Resour. Environ. Eng. Res. Rep. 11, Dept. of Civil Eng., University of Virginia.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL4-0019-0005
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.