PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Direct evaluation of refractive-index structure functions from large-eddy simulation output for atmospheric convective boundary layers

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Fluctuations of the refractive index associated with atmospheric turbulence affect the propagation of electromagnetic and acoustic waves in the atmosphere. In the reported study, the effects of turbulence on wave propagation in the atmospheric convective boundary layer (CBL) are considered in terms of the second-order refractive index structure function and related to its structure-function parameter C2n . Two structure-function evaluation methods are compared. The direct evaluation method involves calculating the refractive index at each point in the simulation domain with subsequent calculation of the structure function. The second method is based on a parameterized linear relationship between the refractive-index structure function and temperature/humidity structure functions. For each evaluation method, vertical profiles of C2n computed for separations along the three coordinate directions collapse together over a significant portion of the CBL. Near-surface divergence of C2n values along the horizontal directions was noted and attributed to the influence of surface wind shear on the turbulent fluctuations of temperature and humidity. The behavior of C2n near the surface was shown to agree favorably with similarity-theory predictions.
Czasopismo
Rocznik
Strony
1474--1492
Opis fizyczny
Bibliogr. 25 poz.
Twórcy
autor
Bibliografia
  • Andreas, E.L. (1988), Estimating Cn2 over snow and sea ice from meteorological data, J. Opt. Soc. Am. A 5, 4, 481-495, DOI: 10.1364/JOSAA.5.000481.
  • Benjamin, S.G., K.J. Brundage, and L.L. Morone (1994), Implementation of the Rapid Update Cycle. Part I: Analysis/Model Description, NOAA/NWS Technical Procedures Bull., 16 pp.
  • Burk, S.D. (1980), Refractive index structure parameters: Time-dependent calculations using a numerical boundary-layer model, J. Appl. Meteor. 19, 5, 562-576, DOI: 10.1175/1520-0450(1980)019<0562:RISPTD>2.0.CO;2.
  • Cheinet, S., and P. Cumin (2011), Local structure parameters of temperature and humidity in the entrainment-drying convective boundary layer: A largeeddy simulation analysis, J. Appl. Meteor. Climatol. 50, 2, 472-481, DOI: 10.1175/2010JAMC2426.1.
  • Cheinet, S., and A.P. Siebesma (2009), Variability of local structure parameters in the convective boundary layer, J. Atmos. Sci. 66, 4, 1002-1017, DOI: 10.1175/2008JAS2790.1.
  • Cook, D.R., and M.S. Pekour (2008), Eddy correlation flux measurement systems handbook, Tech. Rep. DOE/SC-ARM/TR-05, 15 pp.
  • Corrsin, S. (1951), On the spectrum of isotropic temperature fluctuations in an isotropic turbulence, J. Appl. Phys. 22, 4, 469-473, DOI: 10.1063/1.1699986.
  • Deardorff, J.W. (1980), Stratocumulus-capped mixed layers derived from a threedimensional model, Bound.-Layer Meteorol. 18, 4, 495-527, DOI: 10.1007/BF00119502.
  • Essenwanger, O., and E.R. Reiter (1969), Power spectrum, structure function, vertical wind shear, and turbulence in troposphere and stratosphere, Arch. Met. Geoph. Biokl. A, 18, 17-24, DOI: 10.1007/BF02247861.
  • Fedorovich, E., R. Conzemius, and D. Mironov (2004a), Convective entrainment into a shear-free, linearly stratified atmosphere: Bulk models reevaluated through large eddy simulations, J. Atmos. Sci. 61, 3, 281-295, DOI: 10.1175/1520-0469(2004)061<0281:CEIASL>2.0.CO;2.
  • Fedorovich, E., R. Conzemius, I. Esau, F. Katopodes Chow, D. Lewellen, C.-H. Moeng, D. Pino, P. Sullivan, and J. Vilà-Guerau de Arellano (2004b), Entrainment into sheared convective boundary layers as predicted by different large eddy simulation codes. In: 16th Symp. on Boundary Layers and Turbulence, P. 4.7, Amer. Meteor. Soc., Portland, ME.
  • Frederickson, P.A., K.L. Davidson, C.R. Zeisse, and C.S. Bendall (2000), Estimating the refractive index structure parameter (Cn2) over the ocean using bulk methods, J. Appl. Meteor. 39, 1770-1783, DOI: 10.1175/1520-0450-39.10.1770.
  • Gibbs, J.A., E. Fedorovich, and A.M.J. van Eijk, (2011), Evaluating Weather Research and Forecasting (WRF) model predictions of turbulent flow parameters in a dry convective boundary layer, J. Appl. Meteor. Climatol. 50, 12, 2429-2444, DOI: 10.1175/2011JAMC2661.1.
  • Kaimal, J.C., J.C. Wyngaard, D.A. Haugen, O.R. Cotè, Y. Izumi, S.J. Caughey, and C.J. Readings (1976), Turbulence structure in the convective boundary layer, J. Atmos. Sci. 33, 2152-2169, DOI: 10.1175/1520-0469(1976)033<2152:TSITCB>2.0.CO;2.
  • Kohsiek, W. (1988), Observation of the structure parameters C2T, CTQ and C2Q in the mixed layer over land, Appl. Opt. 27, 11, 2236-2240, DOI: 10.1364/AO.27.002236.
  • McBean, G.A., and J.A. Elliott (1981), Pressure and humidity effects on optical refractive-index fluctuations, Bound.-Layer Meteorol. 20, 1, 101-109, DOI: 10.1007/BF00119926.
  • Obukhov, A.M. (1949), The structure of the temperature field in a turbulent flow, Izv. Akad. Nauk SSSR, Geogr. Geogiz. 13, 1, 58-69 (in Russian).
  • Peltier, L.J., and J.C. Wyngaard (1995), Structure-function parameters in the convective boundary layer from large-eddy simulation, J. Atmos. Sci. 52, 21, 3641-3660, DOI: 10.1175/1520-0469(1995)052<3641:SPITCB>2.0.CO;2.
  • Tatarskii, V.I. (1961), Wave Propagation in a Turbulent Medium, McGraw-Hill, New York, 285 pp.
  • van den Kroonenberg, A.C., S. Martin, F. Beyrich, and J. Bange (2012), Spatiallyaveraged temperature structure parameter over a heterogeneous surface measured by an unmanned aerial vehicle, Bound.-Layer Meteorol. 142, 1, 55-77, DOI: 10.1007/s10546-011-9662-9.
  • Wyngaard, J.C. (2010), Turbulence in the Atmosphere, Cambridge University Press, New York, 393 pp.
  • Wyngaard, J.C., and O.R. Coté (1971), The budgets of turbulent kinetic energy and temperature variance in the atmospheric surface layer, J. Atmos. Sci. 28, 2, 190-201, DOI: 10.1175/1520-0469(1971)028<0190:TBOTKE>2.0.CO;2.
  • Wyngaard, J.C., and M.A. LeMone (1980), Behavior of the refractive index structure parameter in the entraining convective boundary layer, J. Atmos. Sci. 37, 7, 1573-1585, DOI: 10.1175/1520-0469(1980)037<1573:BOTRIS>2.0.CO;2.
  • Wyngaard, J.C., W.T. Pennell, D.H. Lenschow, and M.A. LeMone (1978), The temperature-humidity covariance budget in the convective boundary layer, J. Atmos. Sci. 35, 1, 47-58, DOI: 10.1175/1520-0469(1978)035<0047:TTHCBI>2.0.CO;2.
  • Wyngaard, J.C., Y. Izumi, and S.A. Collins, Jr. (1971), Behavior of the refractive index-structure parameter near the ground, J. Opt. Soc. Am. 61, 12, 1646-1650, DOI: 10.1364/JOSA.61.001646.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL4-0018-0010
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.