PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ceilometer observations of the boundary layer over Warsaw, Poland

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Jenoptik's CHM 15k ceilometer was used to monitor the vertical structure of the atmospheric boundary layer (ABL) over Warsaw, from 2008 until 2011, on Mondays and Thursdays, in 24h periods. Hereby, we present an assessment of the signal-to-noise ratio along with a sensitivity study of signal smoothing methods developed in-house. With the proposed averaging, ceilometer attenuated-backscatter signals reached the high troposphere, which makes this sensor competitive to a single-wavelength elastic lidar. The smoothed signals were employed as an input for algorithms developed to automatically detect the ABL height, clouds, fog, and precipitation in the lower troposphere. The classification of weather conditions was validated by the METAR reports from the Warsaw Airport. The obtained ABL heights were compared to those assessed from radiosoundings from a nearby meteorological station WMO12374 in Legionowo. An inter-comparison of the ABL heights, derived by using the Jenoptik's automated routine against the in-house developed algorithms, is in favor of the latter. The presented four annual cycles of the ABL height, obtained with various derivative-based methods, are the first such longterm results reported using the CHM 15k sensor in Eastern Europe.
Słowa kluczowe
Czasopismo
Rocznik
Strony
1386--1412
Opis fizyczny
Bibliogr. 25 poz.
Twórcy
autor
autor
autor
Bibliografia
  • Asimakopoulos, D.N., C.G. Helmis, and J. Michopoulos (2004), Evaluation of SODAR method for the determination of the atmospheric boundary layer mixing height, Meteorol. Atmos. Phys. 85, 1-3, 85-92, DOI: 10.1007/s00703-003-0036-9.
  • Boers, R., and S.H. Melfi (1987), Cold air outbreak during MASEX: Lidar observations and boundary-layer model test, Bound.-Lay. Meteorol. 39, 1-2, 41-51, DOI: 10.1007/BF00121864.
  • Brooks, I.M. (2003), Finding boundary layer top: Application of a wavelet covariance transform to lidar backscatter profiles, J. Atmos. Ocean. Tech. 20, 8, 1092-1105, DOI: 10.1175/1520-426(2003)020<1092:FBLTAO>2.0.CO;2.
  • De Tomassi, F., and M.R. Perrone (2006), PBL and dust layer seasonal evolution by lidar and radiosounding measurements over a peninsular site, Atmos. Res. 80, 1, 86-103, DOI: 10.1016/j.atmosres.2005.06.010.
  • Emeis, S. (2010), Surface-Based Remote Sensing of the Atmospheric Boundary Layer, Atmospheric and Oceanographic Sciences Library, Vol. 40, Springer, Dordrecht, 200 pp., DOI: 10.1007/978-90-481-9340-0.
  • Eresmaa, N., A. Karppinen, S.M. Joffre, J. Räsänen, and H. Talvitie (2006), Mixing height determination by ceilometer, Atmos. Chem. Phys. 6, 6, 1485-1493, DOI: 10.5194/acp-6-1485-2006.
  • Heese, B., H. Flentje, D. Althausen, A. Ansmann, and S. Frey (2010), Ceilometer lidar comparison: backscatter coefficient retrieval and signal-to-noise ratio determination, Atmos. Meas. Tech. 3, 6, 1763-1770, DOI: 10.5194/amt-3-1763-2010.
  • Kłysik, K., and K. Fortuniak (1999), Temporal and spatial characteristics of the urban heat island of Łódź, Poland, Atmos. Environ. 33, 24-25, 3885-3895, DOI: 10.1016/S1352-2310(99)00131-4.
  • Kovalev, V.A., and W.E. Eichinger (2004), Elastic Lidar: Theory, Practice, and Analysis Methods, John Wiley & Sons Inc., DOI: 10.1002/0471643173.
  • Markowicz, K.M., T. Zieliński, A. Pietruczuk, M. Posyniak, O. Zawadzka, P. Makuch, I.S. Stachlewska, A.K. Jagodnicka, T. Petelski, W. Kumala, P. Sobolewski, and T. Stacewicz (2012), Remote sensing measurements of the volcanic ash plume over Poland in April 2010, Atmos. Environ. 48, 66-75, DOI: 10.1016/j.atmosenv.2011.07.015.
  • Matthias, V., and J. Bösenberg (2002), Aerosol climatology for the planetary boundary layer derived from regular lidar measurements, Atmos. Res. 63, 3-4, 221-245, DOI: 10.1016/S0169-8095(02)00043-1.
  • O’Connor, E.J., A.J. Illingworth, and R.J. Hogan (2004), A technique for autocalibration of cloud lidar, J. Atmos. Ocean. Tech. 21, 5, 777-786, DOI: 10.1175/1520-0426(2004)021<0777:ATFAOC>2.0.CO;2.
  • Piadlowski, M., and I.S. Stachlewska (2012), On distortion in the CHM15k ceilometer signals. In: Proc. 26th ILRC International Laser Radar Conference, 25-29 July 2012, Porto Heli, Greece, 85-88.
  • Piądłowski, M.J. (2010), Long-term ceilometer observations of the planetary boundary layer height over Warsaw, M.Sc. Thesis, 38 pp.
  • Piironen, A.K., and E.W. Eloranta (1995), Convective boundary layer mean depths and cloud geometrical properties obtained from volume imaging lidar data, J. Geophys. Res. 100, D12, 25569-25576, DOI: 10.1029/94JD02604.
  • Seibert, P., F. Beyrich, S.-E. Gryning, S. Joffre, A. Rasmussen, and P. Tercier (2000), Review and intercomparison of operational methods for the determination of mixing height, Atmos. Environ. 34, 7, 1001-1027, DOI: 10.1016/S1352-2310(99)00349-0.
  • Seidel, D.J., C.O. Ao, and K. Li (2010), Estimating climatological planetary boundary layer heights from radiosonde observations: Comparison of methods and uncertainty analysis, J. Geophys. Res. 115, D16113, DOI: 10.1029/2009JD013680.
  • Sicard, M., C. Pérez, F. Rocadenbosch, J.M. Baldasano, and G. García-Vizcaino (2006), Mixed-layer depth determination in the Barcelona coastal area from regular lidar measurements: methods, results and limitations, Bound.-Layer Meteorol. 119, 1, 135-157, DOI: 10.1007/s10546-005-9005-9.
  • Sokół, P. (2012), Observations of atmospheric boundary layer structure during the transition from nighttime to daytime conditions, M.Sc. Thesis, Faculty of Physics, University of Warsaw, 45 pp. (in Polish).
  • Sorbjan, Z. (1989), Structure of the Atmospheric Boundary Layer, Prentice Hall, Englewood Cliffs.
  • Stachlewska, I.S., and C. Ritter (2010), On retrieval of lidar extinction profiles using Two-Stream and Raman techniques, Atmos. Chem. Phys. 10, 6, 2813-2824, DOI: 10.5194/acp-10-2813-2010.
  • Stachlewska, I.S., Markowicz K.M., and M. Piadlowski (2010), On forward Klett’s inversion of ceilometer signals. In: Proc. 25th ILRC International Laser Radar Conference, 5-9 July 2010, St. Petersburg, Russia, 1154-1157.
  • Tsaknakis, G., A. Papayannis, P. Kokkalis, V. Amiridis, H.D. Kambezidis, R.E. Mamouri, G. Georgoussis, and G. Avdikos (2011), Inter-comparison of lidar and ceilometer retrievals for aerosol and Planetary Boundary Layer profiling over Athens, Greece, Atmos. Meas. Tech. 4, 6, 1261-1273, DOI: 10.5194/amt-4-1261-2011.
  • Welton, E.J., K.J. Voss, H.R. Gordon, H. Maring, A. Smirnov, B. Holben, B. Schmid, J.M. Livingston, P.A. Durkee, P. Formenti, and M.O. Andreae (2000), Ground-based lidar measurements of aerosols during ACE-2: Instrument description, results, and comparisons with other ground-based and airborne measurements, Tellus B 52, 2, 636-651, DOI: 10.1034/j.1600-0889.2000.00025.x.
  • Wiegner, M., and A. Geiss (2012), Aerosol profiling with the JenOptik ceilometer CHM15kx, Atmos. Meas. Tech. Discuss. 5, 3395-3430, DOI: 10.5194/amtd-5-3395-2012.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL4-0018-0007
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.