PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Testing a scaling law for the earthquake recurrence time distributions

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The earthquake recurrence time distribution in a given space-time window is being studied, using earthquake catalogues from different seismic regions (Southern California, Canada, and Central Asia). The quality of the available catalogues, taking into account the completeness of the magnitude, is examined. Based on the analysis of the catalogues, it was determined that the probability densities of the earthquake recurrence times can be described by a universal gamma distribution, in which the time is normalized with the mean rate of occurrence. The results show a deviation from the gamma distribution at the short interevent times, suggesting the existence of clustering. This holds from worldwide to local scales and for quite different tectonic environments.
Czasopismo
Rocznik
Strony
858--873
Opis fizyczny
Bibliogr. 41 poz.
Twórcy
autor
Bibliografia
  • Bak, P., K. Christensen, L. Danon, and T. Scanlon (2002), Unified scaling law for earthquakes, Phys. Rev. Lett. 88, 17, 178501, DOI: 10.1103/PhysRevLet.88.178501.
  • Bottiglieri, M., L. de Arcangelis, C. Godano, and E. Lippiello (2010), Multiple-time scaling and universal behavior of the earthquake interevent time distribution, Phys. Rev. Lett. 104, 15, 158501, DOI: 10.1103/PhysRevLett. 104.158501.
  • Christoskov, L., and R. Lazarov (1981), A method for estimating the seismological catalogues representativeness and its application to the central part of the Balkan region, Bulg. Geophys. J. 8, 3, 66-76 (in Bulgarian).
  • Corral, A. (2003), Local distributions and rate fluctuations in a unified scaling law for earthquakes, Phys. Rev. E 68, 3, 035102(R), DOI: 10.1103/PhysRevE.68.035102.
  • Corral, A. (2004a), Long-term clustering, scaling, and universality in the temporal occurrence of earthquakes, Phys. Rev. Lett. 92, 10, 108501, DOI: 10.1103/PhysRevLett.92.108501.
  • Corral, A. (2004b), Universal local versus unified global scaling laws in the statistics of seismicity, Physica A 340, 590-597, DOI: 10.1016/j.physa.2004.05.010.
  • Corral, A. (2005a), Mixing of rescaled data and Bayesian inference for earthquake recurrence times, Nonlin. Processes Geophys. 12, 1, 89-100, DOI: 10.5194/npg-12-89-2005.
  • Corral, A. (2005b), Time-decreasing hazard and increasing time until the next earthquake, Phys. Rev. E 71, 1, 017101, DOI: 10.1103/PhysRevE.71. 017101.
  • Corral, A. (2005c), Renormalization-group transformations and correlations of seismicity, Phys. Rev. Lett. 95, 2, 028501; DOI: 10.1103/PhysRevLett.95.028501.
  • Corral, A. (2006), Statistical features of earthquake temporal occurrence, Lect. Notes Phys. 705, 191-221, DOI: 10.1007/3-540-35375-5_8.
  • Corral, A. (2009), Statistical tests for scaling in the inter-event times of earthquakes in California, Int. J. Mod. Phys. B 23, 28-29, 5570-5582, DOI: 10.1142/S0217979209063869.
  • Davidsen, J., and C. Goltz (2004), Are seismic waiting time distributions universal?, Geophys. Res. Lett. 31, L21612, DOI: 10.1029/2004GL020892.
  • Ellsworth, W.L., M.V. Matthews, R.M. Nadeau, S.P. Nishenko, P.A. Reasenberg, and R.W. Simpson (1999), A physically-based earthquake recurrence model for estimation of long-term earthquake probabilities, U.S. Geological Survey Open-File Report 99-522.
  • Gardner, J.K., and L. Knopoff (1974), Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian?, Bull. Seimol. Soc. Am. 64, 5, 1363-1367.
  • Gutenberg, B., and C.F. Richter (1965), Seismicity of the Earth, Hafner Pub., New York.
  • Hainzl, S., F. Scherbaum, and C. Beauval (2006), Estimating background activity based on interevent-time distribution, Bull. Seismol. Soc. Am. 96, 1, 313-320, DOI: 10.1785/0120050053.
  • Kagan, Y.Y. (1994), Observational evidence for earthquakes as a nonlinear dynamic process, Physica D 77, 1-3, 160-192, DOI: 10.1016/0167-2789(94)90132-5.
  • Kagan, Y.Y. (1997), Statistical aspects of Parkfield earthquake sequence and Parkfield prediction experiment, Tectonophysics 270, 3-4, 207-219, DOI: 10.1016/S0040-1951(96)00210-7.
  • Kagan, Y.Y., and D.D. Jackson (1995), New seismic gap hypothesis: Five years after, J. Geophys. Res. 100, B3, 3943-3959, DOI: 10.1029/94JB03014.
  • Knopoff, L. (1997), Scale invariance of earthquakes. In: B. Dubrulle, F. Graner, and D. Sornette (eds.), Scale Invariance and Beyond, Springer-Verlag, Berlin, 159-172.
  • Molchan, G. (2005), Interevent time distribution in seismicity: A theoretical approach, Pure Appl. Geophys. 162, 6-7, 1135-1150, DOI: 10.1007/s00024-004-2664-5.
  • Murray, J., and P. Segall (2002), Testing time-predictable earthquake recurrence by direct measurement of strain accumulation and release, Nature 419, 287-291, DOI: 10.1038/nature00984.
  • Prozorov, A.G., and A.M. Dziewonski (1982), A method of studying variations in the clustering property of earthquakes: Application to the analysis of global seismicity, J. Geophys. Res. 87, B4, 2829-2839, DOI: 10.1029/JB087iB04p02829.
  • Reasenberg, P. (1985), Second-order moment of Central California seismicity, 1969-1982, J. Geophys. Res. 90, B7, 5479-5495, DOI: 10.1029/JB090iB07p05479.
  • Reasenberg, P.A., and L.M. Jones (1989), Earthquake hazard after a mainshock in California, Science 243, 4895, 1173-1176, DOI: 10.1126/science.243.4895.1173.
  • Saichev, A., and D. Sornette (2006), “Universal” distribution of interearthquake times explained, Phys. Rev. Lett. 97, 7, 078501, DOI: 10.1103/PhysRevLett.97.078501.
  • Saichev, A., and D. Sornette (2007), Theory of earthquake recurrence times, J. Geophys. Res. 112, B04313, DOI: 10.1029/2006JB004536.
  • Schwartz, D.P., and K.J. Coppersmith (1984), Fault behavior and characteristic earthquakes: Examples from the Wasatch and San Andreas fault zones, J. Geophys. Res. 89, B7, 5681-5698, DOI: 10.1029/JB089iB07p05681.
  • Shcherbakov, R., G. Yakovlev, D.L. Turcotte, and J.B. Rundle (2005), Model for the distribution of aftershock interoccurrence times, Phys. Rev. Lett. 95, 21, 218501, DOI: 10.1103/PhysRevLett.95.218501.
  • Shearer, P., E. Hauksson, and G. Lin (2005), Southern California hypocenter relocation with waveform cross-correlation, Part 2: Results using source-specific station terms and cluster analysis, Bull. Seismol. Soc. Am. 95, 3, 904-915, DOI: 10.1785/0120040168.
  • Sieh, K. (1996), The repetition of large-earthquake ruptures, Proc. Natl. Acad. Sci. USA 93, 9, 3764-3771, DOI: 10.1073/pnas.93.9.3764.
  • Sornette, D., S. Utkin, and A. Saichev (2008), Solution of the nonlinear theory and tests of earthquake recurrence times, Phys. Rev. E 77, 6, 066109, DOI: 10.1103/PhysRevE.77.066109.
  • Stein, R.S. (2002), Parkfield’s unfulfilled promise, Nature 419, 257-258, DOI: 10.1038/419257a.
  • Touati, S., M. Naylor, and I.G. Main (2009), Origin and nonuniversality of the earthquake interevent time distribution, Phys. Rev. Lett. 102, 16, 168501, DOI: 10.1103/PhysRevLett.102.168501.
  • Turcotte, D.L. (1997), Fractals and Chaos in Geology and Geophysics, 2nd ed., Cambridge University Press, Cambridge, 398 pp.
  • Udias, A., and J. Rice (1975), Statistical analysis of microearthquake activity near San Andreas geophysical observatory, Hollister, California, Bull. Seismol. Soc. Am. 65, 4, 809-827.
  • Utsu, T. (1984), Estimation of parameters for recurrence models of earthquakes, Bull. Earthq. Res. Inst. Univ. Tokyo 59, 53-66.
  • Utsu, T. (2002), Statistical features of seismicity. In: W.H.K. Lee, H. Kanamori, P.C. Jennings, and C. Kisslinger (eds.), International Handbook of Earthquake and Engineering Seismology, Part A, Elsevier, New York, 719-732, DOI: 10.1016/S0074-6142(02)80246-7.
  • Utsu, T., Y. Ogata, and R.S. Matsu’ura (1995), The centenary of the Omori formula for a decay law of aftershock activity, J. Phys. Earth 43, 1, 1-33, DOI: 10.4294/jpe1952.43.1.
  • Wang, J.-H., and C.-H. Kuo (1998), On the frequency distribution of interoccurrence times of earthquakes, J. Seismol. 2, 4, 351-358, DOI: 10.1023/A:1009774819512.
  • Wiemer, S. (2001), A software package to analyze seismicity: ZMAP, Seismol. Res. Lett. 72, 3, 373-382, DOI: 10.1785/gssrl.72.3.373.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL4-0017-0021
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.