PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Non-extensivity analysis of seismicity within four subduction regions in Mexico

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The non-extensivity approach based on the Tsallis entropy has been applied to seismicity that occurred from 1988 to 2010 along the Mexican South Pacific coast. We analyzed four different regions, characterized by different subduction patterns. Our results indicate a possible correlation between the non-extensive parameters and the seismicity pattern associated with the inclination angle of each subduction region.
Słowa kluczowe
Czasopismo
Rocznik
Strony
833--845
Opis fizyczny
Bibliogr. 37 poz.
Twórcy
autor
  • Departamento de Ciencias Basicas, Universidad Autonoma Metropolitana, Azcapotzalco, Mexico D.F., Mexico, arr@correo.azc.uam.mx
Bibliografia
  • Abe, S. (2003), Geometry of escort distributions, Phys. Rev. E 68, 3, 031101, DOI: 10.1103/PhysRevE.68.031101.
  • Anderson, R.S., A.L. Densmore, and M.A. Ellis (1999), The generation and degradation of marine terraces, Basin Res. 11, 1, 7-19, DOI: 10.1046/j.1365-2117.1999.00085.x.
  • Bak, P., C. Tang, and K. Wiesenfeld (1988), Self-organized criticality, Phys. Rev. A 38, 1, 364-374, DOI: 10.1103/PhysRevA.38.364.
  • Burridge, R., and L. Knopoff (1967), Model and theoretical seismicity, Bull. Seismol. Soc. Am. 57, 3, 341-371.
  • Carlson, J.M., and J.S. Langer (1989), Mechanical model of an earthquake fault, Phys. Rev. A 40, 11, 6470-6484, DOI: 10.1103/PhysRevA.40.6470.
  • Darooneh, A.H., and A. Mehri (2010), A nonextensive modification of the Gutenberg–Richter law: q-stretched exponential form, Physica A 389, 3, 509-514, DOI: 10.1016/j.physa.2009.10.006.
  • De Santis, A., G. Cianchini, P. Favali, L. Beranzoli, and E. Boschi (2011), The Gutenberg–Richter law and entropy of earthquakes: two case studies in Central Italy, Bull. Seismol. Soc. Am. 101, 3, 1386-1395, DOI: 10.1785/0120090390.
  • Gutenberg, B., and C.F. Richter (1944), Frequency of earthquakes in California, Bull. Seismol. Soc. Am. 34, 4, 185-188.
  • Hasumi, T. (2009), Hypocenter interval statistics between successive earthquakes in the two-dimensional Burridge–Knopoff model, Physica A 388, 4, 477-482, DOI: 10.1016/j.physa.2008.10.017.
  • Iglesias, A., S.K. Singh, A.R. Lowry, M. Santoyo, V. Kostoglodov, K.M. Larson and S.I. Franco-Sánchez (2004), The silent earthquake of 2002 in the Guerrero seismic gap, Mexico (Mw = 7.6): Inversion of slip on the plate interface and some implications, Geof. Int. 43, 309-317.
  • Kagan, Y.Y., and L. Knopoff (1981), Stochastic synthesis of earthquake catalogs, J. Geophys. Res. 86, B4, 2853-2862, DOI: 10.1029/JB086iB04p02853.
  • King, G. (1983), The accommodation of large strains in the upper lithosphere of the earth and other solids by self-similar fault systems: the geometrical origin of b-value, Pure Appl. Geophys. 121, 5-6, 761-815, DOI: 10.1007/BF02590182.
  • Kostoglodov, V., and L. Ponce (1994), Relationship between subduction and seismicity in the Mexican part of the Middle America trench, J. Geophys. Res. 99, B1, 729-742, DOI: 10.1029/93JB01556.
  • Larson, K.M., A.R. Lowry, V. Kostoglodov, W. Hutton, O. Sánchez, K. Hudnut and G. Suarez (2004), Crustal deformation measurements in Guerrero, Mexico, J. Geophys. Res. 109, B4, 1-19, DOI: 10.1029/2003JB002843.
  • Lay, T., and T.C. Wallace (1995), Modern Global Seismology, Academic Press, New York.
  • Levenberg, K. (1944), A method for the solution of certain non-linear problems in least squares, Quart. Appl. Math. 2, 164-168.
  • Marquardt, D.W. (1963), An algorithm for least-squares estimation of nonlinear parameters, SIAM J. Appl. Math. 11, 2, 431-441, DOI: 10.1137/0111030.
  • Moré, J.J. (1978), The Levenberg–Marquardt algorithm: Implementation and theory, Lect. Notes Math. 630/1978, DOI: 10.1007/BFb0067700.
  • Ohtake, M., T. Matumoto, and G.V. Latham (1981), Evaluation of the forescast of the 1978 Oaxaca, Southern Mexico earthquake based on a precursory seismic quiescence. In: D.W. Simpson and P.G. Richards (eds.), Earthquake Prediction, Maurice Ewing Series, AGU, United States, 53-62.
  • Olami, Z., H.J.S. Feder, and K. Christensen (1992), Self-organized criticality in a continuous, nonconservative cellular automaton modeling earthquakes, Phys. Rev. Lett. 68, 8, 1244-1247, DOI: 10.1103/PhysRevLett.68.1244.
  • Pardo, M., and G. Suarez (1995), Shape of the subducted Rivera and Cocos plates in southern Mexico: Seismic and tectonic implications, J. Geophys. Res. 100, B7, 12357-12373, DOI: 10.1029/95JB00919.
  • Ramírez-Herrera, M.T., V. Kostoglodov, and J. Urrutia-Fucugauchi (2011), Overview of recent coastal tectonic deformation in the Mexican subduction zone, Pure Appl. Geophys. 168, 8-9, 1415-1433, DOI: 10.1007/s00024-010-0205-y.
  • Sarlis, N.V., E.S. Skordas, and P.A. Varotsos (2010), Nonextensivity and natural time: The case of seismicity, Phys. Rev. E 82, 2, 021110, DOI: 10.1103/PhysRevE.82.021110.
  • Silva, R., G.S. França, C.S. Vilar, and J.S. Alcaniz (2006), Nonextensive models for eartquakes, Phys. Rev. E 73, 026102, DOI: 10.1103/PhysRevE.73.026102.
  • Singh, S.K., M. Rodriguez, and L. Esteva (1983), Statistics of small earthquakes and frequency of occurrence of large earthquakes along the Mexican subduction zone, Bull. Seismol. Soc. Am. 73, 6A, 1779-1796.
  • Singh, S.K., L. Ponce, and S.P. Nishenko (1985), The great Jalisco, Mexico, earthquakes of 1932: Subduction of the Rivera plate, Bull. Seismol. Soc. Am. 75, 5, 1301-1313.
  • Song, T.-R.A., D.V. Helmberger, M.R. Brudzinski, R.W. Clayton, P. Davis, X. Pérez-Campos, and S.K. Singh (2009), Subducting slab ultra-slow velocity layer coincident with silent earthquakes in southern Mexico, Science 324, 5926, 502-506, DOI: 10.1126/science.1167595.
  • Sotolongo-Costa, O., and A. Posadas (2002), Tsallis entropy: A non-extensive frequency-magnitude distribution of earthquakes, arXiv:cond-mat/0211160v1[cond-mat.soft].
  • Sotolongo-Costa, O., and A. Posadas (2004), Fragment-asperity interaction model for earthquakes, Phys. Rev. Lett. 92, 4, 048501, DOI: 10.1103/PhysRevLett.92.048501.
  • Telesca, L. (2010), Nonextensive analysis of seismic sequences, Physica A 389, 9, 1911-1914, DOI: 10.1016/j.physa.2010.01.012.
  • Telesca, L., and C.-C. Chen (2010), Nonextensive analysis of crustal seismicity in Taiwan, Nat. Hazards Earth Syst. Sci. 10, 1293-1297, DOI: 10.5194/nhess-10-1293-2010.
  • Tsallis, C. (1988), Possible generalization of Boltzmann–Gibbs statistics, J. Stat. Phys. 52, 1-2, 479-487, DOI: 10.1007/BF01016429.
  • Turcotte, D.L. (1997), Fractals and Chaos in Geology and Geophysics, 2nd ed., Cambridge University Press, Cambridge.
  • Vargas, C.A., E. Basurto, L. Guzmán-Vargas, and F. Angulo-Brown (2008), Sliding size distribution in a simple spring-block system with asperities, Physica A 387, 13, 3137-3144, DOI: 10.1016/j.physa.2008.01.108.
  • Varotsos, P.A., N.V. Sarlis, E.S. Skordas, H.K. Tanaka, and M.S. Lazaridou (2006), Entropy of seismic electric signals: Analysis in natural time under time reversal, Phys. Rev. E 73, 3, 031114, DOI: 10.1103/PhysRevE.73.031114.
  • Wesnousky, S.G. (1999), Crustal deformation processes and the stability of the Gutenberg–Richter relationship, Bull. Seismol. Soc. Am. 89, 4, 1131-1137.
  • Zúñiga, F.R., and S. Wiemer (1999), Seismic patterns: are they always related to natural causes?, Pure Appl. Geophys. 155, 2-4, 713-726, DOI: 10.1007/s000240050285.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL4-0017-0019
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.