PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Simulation and properties of a non-homogeneous spring-block earthquake model with asperities

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The spring-block model proposed by Olami, Feder and Christensen (OFC) has several properties that are similar to those observed in real seismicity. In this paper we propose a modification of the original model in order to take into account that in a real fault there are several regions with different properties (non-homogeneity). We define regions in the network that is reminiscent of the real seismic fault, with different sizes and elastic parameter values. We obtain the Gutenberg-Richter law for the synthetic earthquake distributions of magnitude and the stair-shaped plots for the cumulative seismicity. Again, as in the OFC-homogeneous case, we obtain the stability for the cumulative seismicity stair-shaped graphs in the long-term situation; this means that the straight line slopes that are superior bounds of the staircases have a behavior akin to the homogeneous case. We show that with this non-homogeneous OFC model it is possible to include the asperity concept to describe high-stress zones in the fault.
Słowa kluczowe
Czasopismo
Rocznik
Strony
740--757
Opis fizyczny
Bibliogr. 40 poz.
Twórcy
  • Basic Sciences Department, Unidad Profesional Interdisciplinaria de Biotecnologia, Instituto Politecnico Nacional, Mexico D.F, Mexico, amunoz@avantel.net
Bibliografia
  • Angulo-Brown, F., and A. Muñoz-Diosdado (1999), Further seismic properties of a spring-block earthquake model, Geophys. J. Int. 139, 2, 410-418, DOI: 10.1046/j.1365-246x.1999.00946.x.
  • Bach, M., F. Wissel, and B. Drossel (2008), Olami–Feder–Christensen model with quenched disorder, Phys. Rev. E 77, 067101, DOI: 10.1103/PhysRevE.77.067101.
  • Bak, P. (1996), How Nature Works, Springer, New York.
  • Bak, P., and C. Tang (1989), Earthquakes as a self-organized critical phenomenon, J. Geophys. Res. 94, B11, 15635-15637, DOI: 10.1029/JB094iB11p15635.
  • Bak, P., C. Tang, and K. Weisenfeld (1987), Self organized criticality: An explanation of 1/f noise, Phys. Rev. Lett. 59, 381-384, DOI: 10.1103/PhysRevLett.59.381.
  • Bak, P., C. Tang, and K. Weisenfeld (1988), Self-organized criticality, Phys. Rev. A 38, 1, 364-374, DOI: 10.1103/PhysRevA.38.364.
  • Barriere, B., and D.L. Turcotte (1994), Seismicity and self-organized criticality, Phys. Rev. E 49, 2, 1151-1160, DOI: 10.1103/PhysRevE.49.1151.
  • Brown, S.R., C.H. Scholz, and J.B. Rundle (1991), A simplified spring block model of earthquakes, Geophys. Res. Lett. 18, 215-218, DOI: 10.1029/91GL00210.
  • Burridge, R., and L. Knopoff (1967), Model and theoretical seismicity, Bull. Seismol. Soc. Am. 57, 341-371.
  • Byerlee, J. D. (1970), Static and kinetic friction under high stress, Int. J. Rock Mech. Min. Sci. 7, 577-582, DOI: 10.1016/0148-9062(70)90018-5.
  • Carlson, J.M., and J.S. Langer (1989), Mechanical model of an earthquake fault, Phys. Rev. A 40, 6470-6484, DOI: 10.1103/PhysRevA.40.6470.
  • Caruso, F., and H. Kantz (2011), Prediction of extreme events in the OFC model on a small world network, Eur. Phys. J. B 79, 7-11, DOI: 10.1140/epjb/e2010-10635-5.
  • Caruso, F., V. Latora, A. Pluchino, A. Rapisarda, and B. Tadic (2006), Olami–Feder–Christensen model in different networks, Eur. Phys. J. B 50, 243-247, DOI: 10.1140/epjb/e2006-00110-5.
  • Ceva, H. (1995), Influence of defects in a coupled map lattice modeling earthquakes, Phys. Rev. E 52, 1, 154-158, DOI: 10.1103/PhysRevE.52.154.
  • Christensen, K., and Z. Olami (1992), Scaling, phase transitions, and nonuniversality in a self organized critical cellular automaton model, Phys. Rev. A 46, 1829-1838, DOI: 10.1103/PhysRevA.46.1829.
  • Corbi, F., F. Funiciello, C. Facenna, G. Ranalli, and A. Heuret (2011), Seismic variability of subduction thrust faults: Insigths from laboratory models, J. Geophys. Res. 116, B06304, DOI: 10.1029/2010JB007993.
  • Ferguson, C.D., W. Klein, and J.B. Rundle (1999), Long-range earthquake fault models, Comput. Phys. 12, 34-40.
  • Geller, R.J., D.D. Jackson, Y. Kagan, and F. Mulargia (1997), Earthquakes cannot be predicted, Science 275, 1616-1617, DOI: 10.1126/science.275.5306.1616.
  • Gutenberg, B., and C.F. Richter (1944), Frequency of earthquakes in California, Bull. Seismol. Soc. Am. 34, 185-188.
  • Hainzl, S., G. Zöller, and J. Kurths (1999), Similar power laws for foreshock and aftershock sequences in a spring-block model for earthquakes, J. Geophys. Res. 104, B4, 7243-7253, DOI: 10.1029/1998JB900122.
  • Helmstetter, A., S. Hergarten, and D. Sornette (2004). Properties of foreshocks and aftershocks of the nonconservative self-organized Olami-Feder-Christensen model, Phys. Rev. E 70, 046120, DOI: 10.1103/PhysRevE.70.046120.
  • Hergarten, S., and H.J. Neugebauer (2002), Foreshocks and aftershocks in the Olami–Feder–Christensen model, Phys. Rev. Lett. 88, 23, 238501, DOI: 10.1103/PhysRevLett.88.238501.
  • Ito, K., and M. Matsuzaki (1990), Earthquakes as a self organized critical phenomena, J. Geophys. Res. 95, B5, 6853-6860, DOI: 10.1029/JB095iB05p06853.
  • Kanamori, H. (1981), The nature of seismicity patterns before large earthquakes. In: D.W. Simpson, and P.G. Richard (eds.), Earthquake Prediction, an International Review, American Geophysical Union, Washington D.C., 1-19.
  • Kawamura, H., T. Yamamoto, T. Kotani, and H. Yoshino (2010), Asperity characteristics of the Olami–Feder–Christensen model of earthquakes, Phys. Rev. E 81, 0311119, DOI: 10.1103/PhysRevE.81.031119.
  • Kotani, T., H. Yoshino, and H. Kawamura (2008), Periodicity and criticality in the Olami–Feder–Christensen model of earthquakes, Phys. Rev. E 77, R010102, DOI: 10.1103/PhysRevE.77.010102.
  • Lay, T., and H. Kanamori (1981), An asperity model of large earthquake sequences. In: D.W. Simpson, and P.G. Richard (eds.), Earthquake Prediction, an International Review, American Geophysical Union, Washington D.C., 579-592.
  • Lomnitz-Addler, J. (1993), Automaton models of seismic fracture: Constraints imposed by the magnitude-frequency relation, J. Geophys. Res. 98, B10, 17745-17756, DOI: 10.1029/93JB01390.
  • Main, I.G., and M. Naylor (2009), Entropy production and self-organized (sub)criticality in earthquake dynamics, Philos. Trans. Roy. Soc. A 368, 131-144, DOI: 10.1098/rsta.2009.0206.
  • Muñoz-Diosdado, A., and F. Angulo-Brown (1999), Patterns of synthetic seismicity and recurrence times in a spring-block earthquake model, Rev. Mex. Fís. 45, 4, 393-400.
  • Nakanishi, H. (1990), Cellular automaton model of earthquakes with deterministic dynamics, Phys. Rev. A 41, 7086-7089, DOI: 10.1103/PhysRevA.41.7086.
  • Naylor, M., and I.G. Main (2008), Cell scale self-organization in the OFC model for earthquake dynamics, Eur. Phys. J. B 64, 139-146, DOI: 10.1140/epjb/e2008-00279-5.
  • Olami, Z., H.J.S. Feder, and K. Christensen (1992), Self organized criticality in a continuous, nonconservative cellular automaton model, Phys. Rev. Lett. 68, 1244-1247, DOI: 10.1103/PhysRevLett.68.1244.
  • Pacheco, J.F., C.H. Scholz, and L.R. Sykes (1992), Changes in frequency size relationship from small to large earthquakes, Nature 355, 71-73, DOI: 10.1038/355071a0.
  • Rudolf-Navarro, A.H., A. Muñoz-Diosdado, and F. Angulo-Brown (2010), Seismic quiescence patterns as possible precursors of great earthquakes in Mexico, Int. J. Phys. Sci. 5, 6, 651-670.
  • Ruff, L.R. (1992), Asperity distributions and large earthquake occurrence in subduction zones, Tectonophysics 211, 61-83, DOI: 10.1016/0040-1951(92)90051-7.
  • Scholz, C.H., and J.T. Engelder (1976), The role of asperity indentation and ploughing in rock friction, I. Asperity creep and stick slip, Int. J. Rock Mech. Min. Sci. 13, 149-154, DOI: 10.1016/0148-9062(76)90819-6.
  • Suárez, G., T. Monfret, G. Wittlinger, and C. David (1990), Geometry of subduction and depth of the seismogenic zone in the Guerrero gap, Mexico, Nature 345, 336-338, DOI: 10.1038/345336a0.
  • Turcotte, D.L. (1997), Fractals and Chaos in Geology and Geophysics, Cambridge University Press, Cambridge.
  • Yamamoto, T., H. Yoshino, and H. Kawamura (2010), Simulation study of the inhomogeneous Olami–Feder–Christensen model of earthquakes, Eur. Phys. J. B 77, 559-564, DOI: 10.1140/epjb/e2010-10503-4.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL4-0017-0014
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.