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A SERIES OF MATHEMATICAL MODELS OF MECHATRONIC 

SYSTEM WITH PIEZOELECTRIC ACTUATOR 

Abstract: Paper presents a process of modelling and investigation of a mechatronic system 
with piezoelectric transducer used as a vibration actuator – reverse piezoelectric effect is 
applied in considered system. A series of mathematical models of this system is presented. 
Characteristic that describes relation between amplitude of the system’s vibration and 
parameters of harmonic voltage that supplied piezoelectric actuator is assigned on the basis of 
corrected approximate Galerkin method. Obtained results are juxtaposed and the most 
appropriate mathematical model of this system is chosen. 

1. Introduction 

Materials with piezoelectric properties called smart materials are widely used as sensors or 
actuators. It is possible because both the direct and reverse piezoelectric effect can be used.  
Piezoelectric transducer generates electric voltage when it is deformed or deforms when an 
electric voltage is applied [6]. In the first case it can be used as a sensor, while in the second 
case it is an actuator. Nowadays, there are a lot of commercial applications of direct and 
reverse piezoelectric effects [5,7,8].  

It is very important to use precise mathematical model of system with piezoelectric 
transducer used as a sensor or an actuator in order to obtain required system’s operation and 
dynamic characteristic. Therefore, a process of modelling and development of a mathematical 
model of system with piezoelectric transducer used as a passive vibration damper was 
presented in papers [1-3]. A series of mathematical models of this system was presented and 
approximate Galerkin method was used to analyze it. The approximate method was verify and 
corrected, so obtained result could be treated as very precise [4]. Now, a series of discrete – 
continuous mathematical models of system with PZT transducer used as an actuator is 
presented. Results obtained using each of mathematical models are juxtaposed to select the 
most appropriate model of this system. A possibility to determine the impact of properties of 
all system’s components on its dynamic characteristic and minimal complexity of the 
mathematical model are established criteria.  
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2. Considered system and assumptions 

The considered system with piezoelectric actuator is presented in Fig. 1. It is a cantilever 
beam with a PZT transducer glued on the beam’s surface. The transducer is supplied by an 
external voltage source, so it works as an actuator of the beam’s flexural vibration.  

Fig.1. System with piezoelectric actuator 

Dynamic characteristic Vα  describes relation between deflection ( )txy ,  of the beam’s free 

end ( )lx =  and electric voltage that supply the actuator: 

( ) ( )tUtxy V ⋅= α, ,         (1) 

where: 
( ) tUtU ωcos0 ⋅= .          (2) 

In agreement with assumptions of the approximate Galerkin method the equation of the 
beam’s deflection was assumed as [4]: 
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⋅= ,   (3) 

A is amplitude of vibration. 
Internal resistance and electric capacitance of the piezoelectric transducer were included so 

the actuator supplied by the external harmonic voltage was modelled as a linear RC series 
electric circuit and described by equation:  

( ) ( ) ( )tUtU
t

tU
CR C

C
PP =+

∂

∂
,  (4)

where: PR  and PC  are electric resistance and capacitance of the transducer. ( )tUC is an 

electric voltage on the capacitor. 
Rheological properties of the beam and glue layer between the transducer and beam’s 

surface were introduced using Kelvin – Voigt model of materials. 

...3,2,1=n
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3. A series of mathematical models 

A series of discrete – continuous mathematical models of the considered system was 
created using equation of the piezoelectric actuator (5) and equation of the beam’s motion 
designated in accordance with d’Alembert’s principle, taking into account arrangement of 
forces and bending moments acting on a part of the system. The cantilever beam was 
modelled as a Bernoulli-Euler beam.  

In the first mathematical model the glue layer between the beam’s surface and actuator was 
neglected. An equality of the beam and actuator’s strains was assumed. Arrangement of forces 
and bending moments acting in this system is presented in Fig. 2. 

Fig.2. Arrangement of forces and bending moments acting in the system for the first model 

( )txT ,  and ( )txM ,  are transverse forces and bending moments that replace action of the cut-

off part of the beam. ( )txM P , is the bending moment generated by the actuator as a result of 
applied voltage. Obtained equation of the beam’s motion is: 
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where: ( )txS ,1  is the beam’s surface strain, ( )t1λ  is a strain of the free actuator that occurs as  

a result of externally applied voltage. bJ , bρ  and bη  are moment of inertia, density and 

structural damping coefficient and *
bE  is a substitute Young modulus of the beam [1]. E

c11  is 

Young modulus of the actuator measured under constant electric field. A Heaviside function: 

( ) ( )21 xxHxxHH −−−= , (6) 

was introduced to curb a working space of the actuator to partition from x1 to x2.  
In the second model influence of the glue layer between the beam and actuator was 

included. A pure shear of this layer was assumed. Arrangement of forces and bending 
moments acting in this system is presented in Fig. 3. Obtained equation of the beam’s motion: 
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where: ∗G , kη  are a substitute shear modulus and structural damping coefficient of the glue 

layer. kε  and bε  are the glue layer and beam’s strains. 

Fig.3. Arrangement of forces and bending moments acting in the system for the second model 

In the third mathematical model the considered system was modelled as a combined beam 
and process of eccentric tension of the glue layer was considered [2]. A substitute cross-
section of the composite beam was introduced and stress of the system’s elements was 
designated. Obtained equation of the beam’s motion is: 
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where:  
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In the last mathematical model the considered system was also modelled as a combined 
beam but the impact of the actuator to the beam was described by the bending moment 
generated as a result of applied electric voltage. Obtained equation of the beam’s motion is: 
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4. Obtained results 

Using designated mathematical models modulus of the dynamic characteristic VY  was 

calculated and presented in Fig. 4 for the first three natural frequencies of the mechanical 
subsystem ( )3,2,1=n . Parameters of the system are presented in Tab. 1.  

Tab. 1. Geometrical and material parameters of the mechanical subsystem, actuator and glue layer 

Fig.4. Dynamic characteristic of the considered mechatronic system, for n=1,2,3 
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The dynamic characteristic is presented in a half logarithmic scale in order to present 
obtained results precisely. 

5. Conclusions 

It was proved that after correction the approximate Galerkin method can be used to 
analyze mechatronic systems with piezoelectric actuators. Taking into account verification of 
the approximate method presented in the previous publication [4], obtained results can be 
treated as very precise. Mathematical model with bending moment and eccentric tension of 
the glue layer (model 4) can be treated as the most optimal model – properties of all system’s 
components  are taken into account (including influence of the glue layer ), while this model 
is quite simple. Assumption about pure shear of the glue layer (model  2) leads to the 
idealization of the effectiveness of the system. 
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