PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Misorientation in rolled CuTi4 alloy

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of the work is to investigate the microstructure heat treated and cold rolled commercial copper alloy CuTi4. Design/methodology/approach: The Investigations of the structure were made on ZEISS SUPRA 25 with EBSD method. Observations of the structure on thin foils were made on the JOEL 3010 transmission electron microscope (TEM). Findings: Decomposition of supersaturated solid solution in that alloy is similar to the alloys produced in laboratory scale. The observed differences in microstructure after supersaturation were related to the presence of undissolved Ti particles and increased segregation of titanium distribution in copper matrix including microareas of individual grains. The mentioned factors influence the mechanism and kinetics of precipitation and subsequently the produced wide ranges of functional properties of the alloy. Research limitations/implications: Cold deformation (50% reduction) of the alloy after supersaturation changes the mechanism and kinetics of precipitation and provides possibilities for production of broader sets of functional properties. It is expected that widening of the cold deformation range should result in more complete characteristics of material properties, suitable for the foreseen applications. Similar effects can be expected after application of cold deformation after ageing. Practical implications: The elaborated research results present some utilitarian qualities since they can be used in development of process conditions for industrial scale production of strips from CuTi4 alloy of defined properties and operating qualities. Originality/value: The mentioned factors influence the mechanism and kinetics of precipitation and subsequently the produced wide ranges of functional properties of the Cu-Ti alloys.
Rocznik
Strony
5--12
Opis fizyczny
Bibliogr. 43 poz.
Twórcy
autor
autor
  • Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland, jaroslaw.konieczny@polsl.pl
Bibliografia
  • [1] W. Ozgowicz, W. Malec, L. Ciura, Investigation on the deformability of tin bronzes CuSn6 modified with zirconium on the industrial hot rolling of flat ingots, Journal of Achievements in Materials and Manufacturing Engineering 24/1 (2007) 78-83.
  • [2] W. Ozgowicz, E. Kalinowska-Ozgowicz, B. Grzegorczyk, The microstructure and mechanical properties of the alloy CuZn30 after recrystallizion annealing, Journal of Achievements in Materials and Manufacturing Engineering 40/1 (2010) 15-24.
  • [3] T. Küçükömeroglu, G. Pürçek, O. Saray, L. Kara, Investigation of friction and wear behaviours of CuSn10 alloy in vacuum, Journal of Achievements in Materials and Manufacturing Engineering 30/2 (2008) 172-176.
  • [4] S. Özdemir Kart, A. Erbay, H. Kiliç, T. Cagin, M. Tomak, Molecular dynamics study of Cu-Pd ordered alloys, Journal of Achievements in Materials and Manufacturing Engineering 31/1 (2008) 41-46.
  • [5] A.O. Olofinjanaa, K.S. Tan, Achieving combined high strength and high conductivity in re-processed Cu-Cr alloy, Journal of Achievements in Materials and Manufacturing Engineering 35/1 (2009) 14-20.
  • [6] W. Ozgowicz, B. Grzegorczyk, The influence of the temperature of plastic deformation on the structure and mechanical properties of copper alloys CuCo2Be and CuCo1Ni1Be, Archives of Materials Science and Engineering 39/1 (2009) 5-12.
  • [7] G. Wnuk, M. Zielińska, Microstructural and thermal analysis of Cu-Ni-Sn-Zn alloys by means of SEM and DSC techniques, Archives of Materials Science and Engineering 40/1 (2009) 27-32.
  • [8] B. Leszczyńska-Madej, M. Richert, Microstructure and properties of dynamically compressed copper Cu99.99, Journal of Achievements in Materials and Manufacturing Engineering 39/1 (2010) 35-42.
  • [9] B. Oleksiak, G. Siwiec, A. Blacha, J. Lipart, Influence of iron on the surface tension of copper, Archives of Materials Science and Engineering 44/1 (2010) 39-42.
  • [10] L.A. Dobrzański, metal engineering materials, WNT, Warsaw, 2004.
  • [11] Z. Rdzawski, Low alloyed copper, Silesian University of Technology Publishing House, Gliwice, 2009.
  • [12] Z. Rdzawski, W. Głuchowski, Mechanism of decomposition CuBe supersaturated alloy, The Ores and Non-ferrous Metals R 54/3 (2009) 143-148.
  • [13] S. Nagarjuna, M. Srinivas, Grain refinement during high temperature tensil testing of prior cold worked and peak aged Cu-Ti alloys: Evidence of superplasticity, Materials Science and Engineering A 498 (2008) 468-474.
  • [14] S. Nagarjuna, U. Chinta Babu, Partha Ghosal, Effect of cryo-rolling on age hardening of Cu-1.5Ti alloy, Materials Science and Engineering A 491 (2008) 331-337.
  • [15] Z. Rdzawski, J. Stobrawa, W. Głuchowski, J. Konieczny, Microstructure and properties of CuTi4 alloy, Journal of Archievements in Materials and Manufacturing Engineering 42/1-2 (2010) 9-25.
  • [16] S. Nagarjuna and D.S. Sarma, On the variation of lattice parameter of Cu solid solution with solute content in Cu-Ti alloys, Scripta Materialia 41/4 (1999) 359-363.
  • [17] S. Nagarjuna, M. Srinivas, K. Balasubramanian, D.S. Sarma, On the deformation characteristic of solution treated Cu-Ti alloys, Scripta Metallurgica et. Materialia 33/9 (1995) 1455-1460.
  • [18] S. Nagarjuna, M. Srinivas, K. Balasubramanian, D.S. Sarma, Effect of modulations on yield stress and strain hardening exponent of solution treated Cu-Ti alloys, Scripta Materialia 38/9 (1998) 1469-1474.
  • [19] S. Nagarjuna, M. Srinivas, High temperature tensile behaviour of a Cu-1.5 wt.% Ti alloy, Materials Science and Engineering A 335 (2002) 89-93.
  • [20] S. Nagarjuna, K. Balasubramanian, D.S. Sarma, Effect of prior cold work on mechanical properties, electrical conductivity and microstructure of aged Cu-Ti alloys, Journal of Materials Science 34 (1999) 2929-2942.
  • [21] L. Blacha, G. Siwiec, A. Kościelna, A. Dudzik-Truś, Influence of titanium contents on microstructure and properties Cu-Ti system alloys, Materials Engineering 6 (2009) 520-524 (in Polish).
  • [22] R. Markandeya, S. Nagarjuna, D. S. Sarma, Effect of priori cold work on age hardening of Cu-4Ti-1Cr alloy, Materials Science and Engineering A 404 (2005) 305-313.
  • [23] T.J. Konno, R. Nishio, S. Semboshi, T. Ohsuna, E. Okunishi, Aging behavior of Cu-Ti-Al alloy observed by transmission electron microscopy, J Master. Science 43 (2008) 3761-3768.
  • [24] S. Nagarjuna, D. S. Sarma, Effect of cobalt additions on the age hardening of Cu-4.5Ti alloy, Journal of Materials Science 37 (2002) 1929-1940.
  • [25] R. Markandeya, S. Nagarjuna, D.S. Sarma, Precipitation hardening of Cu-3Ti-1Cd alloy, Journal of Materials Engineering and Performance 16 (2007) 640-646.
  • [26] P. Canale, C. Servant, Thermodynamic assessment of the Cu-Ti system taking into account the new stable phase CuTi3 , International Journal of Materials Research 93 (2002) 273-276.
  • [27] T.B. Massalski, Binary alloys phase diagrams 7th Edition, ASM International, Ohio, 1990.
  • [28] J. Dutkiewicz, Mechanism of spinodal and dicscountinous decomposition and ordering processes in aged alloys with A1 structure, Metallurgy and Foundry 80 (1977).
  • [29] J. Dutkiewicz, L. Lityńska, Rusing of elektron diffraction for investigation of spinodal decomposition in Cu-Ti and Al-Zn alloys, Proceedings of the 5th Conference “Electron Microscopy of Solids”, Warsaw-Jadwisin, 1978, 149-154.
  • [30] J. Dutkiewicz, Spinodal decomosition, ordering and discontinous precipitation in deformed and aged copper-titanium alloys, Metals Technology, October (1978) 333-340.
  • [31] J. Dutkiewicz, L. Lityńska, Ordering within percipitates in copper-nickel-titanium alloys, Journal of Materials Science 15 (1980) 2307-2310.
  • [32] G. Gottstein, Rekristallisation metallischer werkstoffe, DMG, 1984.
  • [33] H.X. Li, X.J. Hao, G. Zhao, S.M. Hao, Characteristics of the continuous coarsening and discontinuous coarsening of spinodally decomposed Cu-Ni-Fe alloy, Journal of Materials Science 36 (2001) 779-784.
  • [34] J.-C. Zhao, M.R. Notis, Spinodal decomposition, ordering transformation, and discontinuous precipitation in a Cu-15Ni-8Sn alloy, Acta Materialia 46/12 (1998) 4203-4218.
  • [35] M.A. Mangan, G.J. Shiflet, Tree dimensional investigation of CuTi discontinuous precipitation, Scripta Meterialia 37/4 (1997) 517-522.
  • [36] I.K. Razumov, Formation of intermediate ordered states on spinodal decomposition of alloys, Journal of Engineering Physics and Thermophysics 81/4 (2008) 826-833.
  • [37] V. Sofonea, K.R. Mecke, Morphological characterization of spinodal decomposition kinetic, The European Physical Journal B 8 (1999) 99-112.
  • [38] V. Daniel, H. Lipson, An X-ray study of the dissociation of an alloy of copper, iron and nickel, Proceedings of the Royal Society London A 181/987 (1943) 368-378.
  • [39] V. Lebreton, D. Pachoutinski, Y. Bienvenu, An investigation of microstructure and mechanical properties in Cu-Ti-Sn alloys rich in copper, Materials Science and Engineering A 508 (2009) 83-92.
  • [40] P. Prasad Rao, B.K. Agrawal, A.M. Rao, Comparative study of spinodal decomposition in symmetric and asymmetric Cu-Ni-Cr alloys, Journal of Materials Science 26 (1991) 1485-1496.
  • [41] J. Adamczyk, Theoretical metal science, Part 2, Plastic deformation, consolidation and cracking, Publishing House of Silesian University of Technology, Gliwice, 2005.
  • [42] K. Sztwiertnia, M. Faryna, G. Sawina, Quantitative misorientation characteristics in interphase boundaries in composites, Journal of Microscopy 224 (2006) 4-7.
  • [43] M. Blicharski, S. Gorczyca, Recrystallization with participation of second phase, The Library of Physics Metals, Publishing House Śląsk, Katowice, 1980 (in Polish).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL4-0013-0019
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.