PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The influence of the strain rate on the strength of concrete taking into account the experimental techniques

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Based on extensive literature review the behaviour of concrete under wide range of compressive and tensile strain rates is presented. The dynamic compressive strength of concrete can achieve the value of DIF (dynamic increase factor) equal about 3.5, and the dynamic tensile strength even 13. However, the strain rate response of concrete in tension and compression in all range of strain rate differs much. In compression strain rate sensitivity should be investigated in two domains, because of the shift of test results. The reason of division is probably connected with influence of the method of testing and especially with the specimen shape and size. The article presents also the strain rate sensitivity of new types of cement-based materials, like RPC, which appears not to differ much from the sensitivity of normal concrete.
PL
W artykule, w oparciu o szeroki przegląd literaturowy, przeanalizowano zachowanie betonu poddanego szerokiemu zakresowi ściskających i rozciągających szybkości przemieszczeń. Wytrzymałość betonu poddanego dynamicznym szybkościom przemieszczeń ściskających może osiągnąć 3.5-krotną wartość wytrzymałości statycznej. Dynamiczne szybkości przemieszczeń rozciągających mogą spowodować, że beton osiągnie aż 13-krotną wartość wytrzymałości statycznej. Jednakże odpowiedź betonu na szybkości przemieszczeń rozciągających znacznie się rożni od odpowiedzi betonu na szybkości przemieszczeń ściskających. Wrażliwość betonu na szybkość przemieszczeń ściskających powinna być rozważana w dwóch zakresach, ze względu na skok wyników badań. Przyczyna tego podziału jest prawdopodobnie związana z metodą badania, a w szczególności z wymiarami i kształtem próbek. W artykule zostały również przeanalizowane nowego typu materiały, takie jak RPC, których zachowanie okazało się nie odbiegać od zachowania betonu zwykłego.
Rocznik
Strony
77--86
Opis fizyczny
Bibliogr. 46 poz.
Twórcy
autor
Bibliografia
  • [1] Riisgaard B., Ngo T. & Menais P., Georgakis C.T. & Stang H.; Dynamic Increase Factors for High Performance Concrete in Compression using Split Hopkinson Pressure Bar. Fracture Mechanics of Concrete and Concrete Structures, Italy, 2007 
  • [2] Bischoff PH., Perry S.H.; Compressive behaviour of concrete at high strain rates. Materials and Structures, Vol.24, No.144, 1991; p.425-450 
  • [3] Brara A., Klepaczko JR.; Experimental characterization of concrete in dynamic tension. Mechanics of Materials, Vol.38, No.3, 2006; p.253-267 
  • [4] Ross C.A. , Jerome D.M., Tedesco J. W, Hughes M.L.; Moisture and Strain Rate Effects on Concrete Strength. ACI Materials Journal, Vol.93, 1996; p.293-300 
  • [5] Cavill B, Rehentrost M., Perry V.; Ductal® - An Ultra- High Performance Material for Resistance to Blasts and Impacts. First Specialty Conference on Disaster Mitigation, Calgary, 2006 
  • [6] Lok T.S., Zhao PJ:, Impact Response of Steel Fiber- Reinforced Concrete Using a Split Hopkinson Pressure Bar. Journal of Materials in Civil Engineering, Vol.16, No.l, 2004; p.54-59 
  • [7] Fujikake K, Senga T., Ueda N., Ohno T., Katagiri M.; Effects of Strain Rate on Tensile Behaviour of Reactive Powder Concrete. Journal of Advanced Concrete Technology, Vol.4, No.l, 2006; p.79-84 
  • [8] Kim D.J., El-tawil S., Naaman A.E.; Rate-dependent tensile behavior of high performance fiber reinforced cementitious composites. Materials and Structures, Vol.42, 2009; p.399-414 
  • [9] Pająk M.; Dynamic response of SFRC under different strain rates - an overview of test results. 7th International Conference Analytical Models and New Concepts in Concrete and Masonry Structures, June 13th-15th2011, Kraków 
  • [10] Cotsovos D.M., Pavlovic M.N.; Numerical investigation of concrete subjected to compressive impact loading. Part 2: Parametric investigation of factors affecting behaviour at high loading rates. Computers and Structures, Vol.86, 2008; p.164-180 
  • [11] Watstein D.; Effect of Straining Rate on the Compressive Strength and Elastic Properties of Concrete. Journal of the American Concrete Institute, Vol.49, No.8, 1953; p.729-744 
  • [12] Spooner D.C.; Stress-strain-time relationship for concrete. Magazine of Concrete Research, Vol.23, No.75-76, 1971; p. 127-131 
  • [13] Dhir R.K., Sangha CM.; A study of the relationship between time, strength, deformation and fracture of plain concrete. Magazine of Concrete Research, Vol.24, No.81, 1972; p.197-208 
  • [14] Scott B.D., Park R., Priestley M.J.N.; Stress-Strain Behaviour of Concrete Confined by Overlapping Hoops at Low and High Strain Rates. ACI Journal, Proceedings Vol.79, No.l, Jan-Feb. 1982; p. 13-27 
  • [15] Dilger W.H., Koch R., Kowalczyk R.; Ductility of Plain and Confined Concrete Under Different Strain Rates. ACI Journal, Vol.81, No.l, 1984; p.73-81 
  • [16] Rostdsy F.S., Scheuermann J., Sprenger K.H.; Mechanical behaviour of some construction materials subjected to rapid loading and low temperature. Betonwerk+Fertigteil-Technik, Vol.50, No.6, 1984; p.393-401 
  • [17] Ahmad S.H, Shah S.P.; Behaviour of Hoop Confined Concrete Under High Strain Rates. ACI Journal, Vol.82, 1985; p.634-647 
  • [18] Bischoff PH., Perry S.H.; Impact Behaviour of Plain Concrete Loaded in Uniaxial Compression. Journal of Engineering Mechanics, Vol.121, No.6, 1995; p.685-693 
  • [19] Ross C.A., Tedesco J. W, Kunnen S. T.; Effects of strain rate on concrete strength. ACI Materials Journal, Vol.92, 1995; p.37-47 
  • [20] Gary G, Bailly P.; Behaviour of quasi-brittle material at high strain rate. Experiment and modelling. European Journal of Mechanics, Vol.17, No 3 1998- p.403-420 
  • [21] Filiatrault A., Holleran M.; Stress-strain behaviour of reinforcing steel and concrete under seismic strain rates and low temperatures. Materials and Structures, Vol. 34, 2000; p.235-239 
  • [22] Ghazy M.F., Elaty M.A.A.A.; Influence of strain rate on compressive properties of concrete. Twelfth International Colloquium on Structural and Geotechnical Engineering. 2007; Cairo-Egypt 
  • [23] Ranjith PC, Jasinge D., Song J.Y., Choi S.K; A study of the effect of displacement rate and moisture content on the mechanical properties of concrete: Use of acoustic emission. Mechanics of Materials, Vol.40, 2008; p.453-469 
  • [24] Wang Y, Wang Z., LiangX., An M.; Experimental and numerical studies on dynamic compressive behaviour of reactive powder concretes. Acta Mechanica Solida Sinica, Vol.21. No.5, 2008; p.420-430 
  • [25] Wang Z.L., Liu Y.S., Shen R.F.; Stress-strain relationship of steel fiber-reinforced concrete under dynamic compression. Construction and Building Materials, Vol.22, 2008; p.811-819 
  • [26] Yan D., Lin G.; Influence of initial static stress on the dynamic properties of concrete. Cement & Concrete Composites, Vol.30, 2008; p.327-333 
  • [27] Jiao C, Sun W, Huan S., Jiang G.; Behavior of steel fiber-reinforced high-strength concrete at medium strain rate. Frontiers of Architecture and Civil Engineering in China, Vol.3, No.2, 2009; p. 131-136 
  • [28] Lai J., Sun W.; Dynamic behaviour and visco-elastic damage model of ultra-high performance cementitious composite. Cement and Concrete Research, Vol.39, 2009; p.1044-1051 
  • [29] Tai Y.S.; Uniaxial compression tests at various loading rates for reactive powder concrete. Theoretical and Applied Fracture Mechanics, Vol.52, 2009; p.14-21 
  • [30] Zhang M., Wu H.J., Li Q.M., Huang F.L.; Further investigation on the dynamic compressive strength enhancement of concrete-like materials based on split Hopkinson pressure bar tests. Part 1: Experiments. International Journal of Impact Engineering, Vol.36, 2009; p.1327-1334 
  • [31] Hasan A.S.M.Z., Hamid R., Ariffin A.K., Gani R.; Stress-Strain Behaviour of Normal Strength Concrete Subjected to High Strain Rate. Asian Journal of Applied Sciences, Vol.3, No.2, 2010; p.145-152 
  • [32] Jit Y, Liu H.B., Sheng G.H., Wang H.J.; Experimental study of dynamic mechanical properties of reactive powder concrete under high-strain-rate impacts. Science China Technological Sciences, Vol.53, No.9, 2010; p.2435-2449 
  • [33] Rong Z., Sun W., Zhang Y.\ Dynamic compression behavior of ultra-high performance cement based composites. International Journal of Impact Engineering, Vol.37, 2010; p.515-520 
  • [34] Reinhardi H. W., Rossi R, van MierJ.G.M.; Joint investigation of concrete at high rates of loading. Materials and Structures, Vol.23, 1990; p.213-216 
  • [35] Brara A., Camhorde E, Klepaczko J.R., Mariotti C; Experimental and numerical study of concrete at high strain rates in tension. Mechanics of Materials, Vol.33, 2001; p.33-45 
  • [36] Cadoni E., Labibes K., Albertini C, Berra M., Gmngrasso M.; Strain-rate effect on the tensile behaviour of concrete at different relative humidity levels. Materials and Structures, Vol.34, January-February 2001; p.21-26 
  • [37] Verleysen R, Degrieck J., Taerwe L.; Experimental investigation of the strain rate dependent impact behaviour of cementitious composites. Magazine of Concrete Research, Vol.54, No.4, 2002; p.257-262 
  • [38] Wu H., Zhang Q., Huang E, Jin Q.; Experimental and numerical investigation on the dynamic tensile strength of concrete. International Journal of Impact Engineering, Vol.32, 2005; p.605-617 
  • [39] Schuler H., Mayrhofer Ch., Thoma K. Spall experiments for the measurement of the tensile strength and fracture energy of concrete at high strain rates. International Journal of Impact Engineering, Vol.32, 2006; p.1635-1650 
  • [40] Yan D., Lin G.; Dynamic properties of concrete in direct tension. Cement and Concrete Research, Vol.36, 2006; p.1371-1378 
  • [41] Brara A., Klepaczko J.; Fracture energy of concrete at high loading rates in tension. International Journal of Impact Engineering, Vol.34, 2007; p.424-435 
  • [42] Cadoni E., Asprone D., ProtaA.; High strain-rate testing of concrete and steel for the assessment of the Tenza Bridge under blast loading. Fracture Mechanics of Concrete and Concrete Structures - New tends in fracture mechanics of concrete, Taylor&Francis Group, London 2007; p.627-635 
  • [43] Weerheijrn J., Van Doormaal J.C.A.M.; Tensile failure of concrete at high loading rates: New test data on strength and fracture energy from instrumented spalling tests. International Journal of Impact Engineering, Vol.34, 2007; p.609-626 
  • [44] Erzar B., Forquin P.; An Experimental Method to Determine the Tensile Strength of Concrete at High Rates of Strain. Experimental Mechanics, Vol.50, No.7, 2010; p.941-955 
  • [45] Millard S.G., Molyneaux T.C.K., Bamett S.J., Gao X:, Dynamic enhancement of blast-resistant ultra high performance fibre-reinforced concrete under flexural and shear loading. International Journal of Impact Engineering, Vol.37, 2010; p.405-413 
  • [46] Kim D.J., Sirijaroonchai K, El-Tawil S., Naaman A.E.; Numerical simulation of the Split Hopkinson Pressure Bar test technique for concrete under compression. International Journal of Impact Engineering, Vol.37, 2010; p.141-149 
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL3-0026-0114
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.