PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wpływ budowy petrograficznej i chemicznej węgla kamiennego na temperaturę topliwości popiołu

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Effects of petrographic and chemical structure of coal on the fusion temperature of ash
Języki publikacji
PL
Abstrakty
PL
Spalaniu węgla w paleniskach kotłowych towarzyszą często negatywne zjawiska, do których zaliczyć można między innymi powstawanie osadów na zewnętrznych powierzchniach wymiany ciepła oraz występowanie żużlowania. Na zjawiska te ma wpływ nie tylko konstrukcja i sposób eksploatacji kotła, ale także gatunek spalanego węgla, jego jakość i skład zawartej w nim substancji mineralnej oraz temperatura topliwości popiołu, powstającego w procesie spalania. W wyniku przeprowadzonych badań stwierdzono, że istnieje zależność między parametrami jakościowymi a temperaturą topnienia popiołu i w konsekwencji skłonnością węgla do zanieczyszczania powierzchni grzewczych kotła i żużlowania. Dla 56% popiołów badanych w atmosferze redukującej i dla 13% popiołów badanych w atmosferze utleniającej temperatura topnienia popiołu była niższa od 1300°C (rys. 1-4). Temperatura topnienia popiołu oznaczona w atmosferze redukującej i utleniającej wykazywała wprost proporcjonalną zależność. Współczynnik korelacji wynosił 0,88. W przypadku każdego popiołu temperatura topliwości oznaczona w atmosferze redukującej była zawsze niższa od uzyskanej w atmosferze utleniającej. Największe różnice miedzy temperaturą topnienia popiołu uzyskaną w tych atmosferach występują w przypadku popiołów łatwo topliwych (rys. 5) Stwierdzono także, że najwyższą temperaturę topnienia popiołu, powyżej 1400°C, wykazywały węgle, w których zawartość macerałów "grupy" witrynitu wynosiła powyżej 60% obj., a zawartość macerałów grupy inertynitu była mniejsza niż 28% obj. (rys. 6 i 7). Na temperaturę topliwości popiołu ma również wpływ skład chemiczny popiołu. Większa zawartość takich składników popiołu, jak: Si02, A1203, K20 (rys. 8, 9, 10) powodowała wzrost temperatury topnienia popiołu. Bardziej skomplikowany wpływ na tę temperaturę miały: Fe203, CaO, MgO, S03, Mn304 (rys. 11-15). W miarę wzrostu zawartości tych składników następowało najpierw obniżenie, a następnie wzrost temperatury topnienia popiołu. W przypadku pozostałych składników nie stwierdzono znaczącego wpływu (rys. 16-19). Stwierdzono słabą zależności między temperaturą topnienia popiołu a zawartością popiołu w węglu (rys. 20). W miarę wzrostu zawartości popiołu wzrasta nieznacznie temperatura topnienia popiołu. Istnieje również zależność między zawartością chloru a temperaturą topnienia popiołu (rys. 21). Popioły otrzymane z węgli o najniższej zawartości chloru, poniżej 0,15% (według klasyfikacji Crossleya - węgle o małej skłonności do żużlowania) wykazały najwyższą temperaturę topnienia popiołu - 1500°C lub większą (zalicza sieje do popiołów wysoko topliwych). Wzrost zawartości siarki całkowitej i pirytowej powodował podwyższenie temperatury topnienia popiołu (rys. 22 i 23). Odmiennie wpływała na tę temperaturę obecność siarki popiołowej, wzrost jej zawartości powodował obniżenie temperatury topnienia popiołu (rys. 24). Najwyższy współczynnik korelacji uzyskano dla zależności temperatury topnienia od zawartości CaO, S03, A1203, Fe203, Mn304 (rys. 25). Istotny wpływ na tę temperaturę ma również zawartość manganu. Współczynnik korelacji R wynosi dla tej zależności 0,72 (rys. 26). Wyniki badań uzyskane dla frakcji wydzielonych metodą wzbogacania w cieczach ciężkich wykazały, że frakcje o gęstości 1,26-^1,40 g/cm3 w węglach z kopalń 2 i 3 oraz frakcje o gęstości poniżej 1,36 g/cm5 w węglach z kopalń 1 i 4 charakteryzuje niska zawartość chloru, popiołu i siarki, wyższa zawartość macerałów grupy witrynitu oraz najwyższa temperatura topnienia popiołu zarówno w temperaturze utleniającej, jak i redukującej.
EN
The process of coal burning in boiler furnaces is often accompanied by adverse phenomena, among which, among the others, such ones can be counted as formation of deposits on external heat exchanging surfaces, and occurrence of slags. These effects are influenced not only by the structure and way of boiler utilisation, but also the grade of the burnt coal, its quality and composition of mineral substance contained in it, as well as the fusion temperature of the ash produced in the process of combustion. As a result of the investigations performed, it was found that there is a relationship between the quality parameters and fusion temperature of the ash, and, in consequence, the susceptibility of coal to contamination of the heating surfaces of the boiler and to formation of slags. For 56% of ashes tested in the reducing atmosphere, and for 13% of ashes tested in the oxidising atmosphere, the fusion temperature of the ash was lower than 1300°C (Figs. 1-4). The fusion temperature of the ash, determined in the reducing and oxidising atmospheres, proved to follow a direct proportionality. The correlation coefficient was 0,88. In the case of each ash, the temperature of fusion determined in the reducing atmosphere was always lower than that obtained in the oxidising atmosphere. The largest differences between the temperatures of fusion obtained in these atmospheres occur in the case of fusible ashes (Fig. 5). It has been also found that the highest fusion temperature of the ash, above 1400°C, was shown by the coals in which the vitrinite macerals content was over 60% by volume, and the content of macerals of the inertinite group was lower than 28% vol. (Figs. 6 and 7). The fusion temperature is also influenced by the chemical composition of ash A higher content of such ash components as Si02, CaO, MgO, S03, Mn304(Figs. 11-15). As the content of these components increased, first a drop and then a rise of the ash fusion temperature were recorded. In the case of the remaining components, no significant effect was found (Figs. 16-19). Slight relationship was found between the fusion temperature of ash and the ash content in coal (Fig. 20) With increasing ash content, the fusion temperature of ash slightly increases. There is also a relationship between chlorine content and fusion temperature of ash (Fig. 21). The ashes obtained from coals with the lowest chlorine content, below 0,15% (in accordance with the Crossley's classification, the coals with low susceptibility to ash formation) revealed the highest ash fusion temperature - 1500°C or higher (they are counted into high - fusible ashes). The rise of total and pyrite sulphur resulted in increasing ash fusion temperature (Figs. 22 and 23). The presence of ash sulphur influenced this temperature in a different way, the rise in its content resulted in lowering of the ash fusion temperature (Fig. 24). The highest correlation coefficient was obtained for the dependence of fusion temperature on the content of CaO, S03, A1203, Mn304 (Fig. 25). Also, the content of manganese has a significant effect on this temperature. The correlation coefficient R for this relationship is 0,72 (Fig. 26). The results of tests obtained for the fractions separated using dense liquid separation have shown that tiie fractions with density range 1,26 to 1,40 g/cm3 in coals from No. 2 and 3 mines, and fractions with the density below 1,36 g'cm3 in coals from No. 1 and 4 mines are characterised by low chlorine, ash and sulphur contents, higher content of macerals of vitrinite group, and highest ash fusion temperature both in oxidising and reducing atmospheres.
Rocznik
Tom
Strony
73--96
Opis fizyczny
Bibliogr. 14 poz.
Twórcy
autor
  • Główny Instytut Górnictwa, Zakład Oceny Jakości Paliw Stałych, Pl. Gwarków 1, 40-166 Katowice, tel. 032 259 22 76, rog@gig.katowice.pl
Bibliografia
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL3-0016-0004
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.