PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nonlinear techniques of noise reduction in digital color images

Autorzy
Identyfikatory
Warianty tytułu
PL
Nieliniowe techniki redukcji szumu w barwnych obrazach cyfrowych
Języki publikacji
EN
Abstrakty
EN
This monograph details the author's most important contributions to the rapidly growing field of nonlinear noise reduction in color images. Its content is structured into seven Chapters. The first Chapter describes the fundamentals of color image processing and also presents the sources of image noise, describes their models and defines measures of the quality of image restoration. The second Chapter is focused on the nonlinear adaptive schemes of noise reduction applied in gray scale imaging, which are very often extendable into the multichannel case. Chapter 3 provides the state of the art in color image filtering and serves as a basis for the remaining Chapters, in which author's original contributions are presented. In the next Chapter, the robust anisotropic diffusion filtering scheme, which ignores the central pixel of the filtering window, when building the weighted average of the input samples is introduced. This improvement allows to use the anisotropic technique for the suppression of strong Gaussian and heavy tailed noise, as the influence of the central, corrupted pixel is diminished by an appropriate setting of the conductivity coefficients. In this Chapter the iterative forward and backward diffusion technique is also presented. Chapter 5 is devoted to the development of a powerful class of filters, based on the digital paths concepts and fuzzy similarity measures among pixels in neighborhood relation. This novel technique, which utilizes the connection between image pixels, instead of window based structures, is an extension of the adaptive noise reduction filtering and anisotropic diffusion techniques and is shown to have advantages over traditional methods. The extensive simulations reveal that the proposed filtering framework significantly excels over the standard methods and can be applied for the removal of both Gaussian and impulsive noise. In the next Chapter the problem of nonparametric impulsive noise reduction in multichannel images is addressed. A new family of filters for noise attenuation elaborated by the author, based on the nonparametric probability density estimation of the sample data, is introduced and its relationship to commonly used filtering techniques is investigated. The last Chapter deals with the adaptive optimization of the weighted vector median filters and also introduces the new technique based on the so called sigma-filtering. This novel adaptive technique is based on robust order statistic concepts and simplified statistical measures of vectors' dispersion.
PL
Redukcja szumów jest jednym z najważniejszych etapów przetwarzania wstępnego obrazów cyfrowych. Efektywna filtracja sygnału wizyjnego warunkuje bowiem sukces dalszych etapów jego przetwarzania. Problem redukcji szumów jest szczególnie trudny w przypadku obrazów barwnych, albowiem nie została jak dotąd stworzona spójna teoria umożliwiająca bezpośrednią implementację dobrze poznanych filtrów eliminacji szumów w obrazach z poziomami szarości do poprawy jakości obrazów wielokanałowych. W ciągu ostatnich lat zaproponowano liczne algorytmy redukcji szumów w obrazach barwnych. Najprostszą klasą są filtry liniowe, które mogą efektywnie usuwać addytywne szumy gaussowskie, jednakże nie są one zdolne do adaptacji do nieliniowości występujących w obrazie, co prowadzi do rozmywania krawędzi obiektów oraz innych, ważnych z punktu widzenia percepcji człowieka oraz dalszych etapów przetwarzania, struktur obrazu. Aby poprawić efektywność filtracji szumów, na przestrzeni ostatnich lat zaproponowano różnorodne techniki nieliniowe, z których najpopularniejszą grupę stanowią filtry bazujące na statystykach porządkowych. Filtry rangowe, minimalizujące skumulowaną funkcję dystansową, są skuteczne w usuwaniu szumów impulsowych, jednakże ich wadą jest zbyt duża inwazyjność, manifestująca się w zastępowaniu nie tylko pikseli obrazu, które uległy kontaminacji, ale także pikseli oryginalnych, co prowadzi do destrukcji drobnych struktur obrazu o wielkości porównywalnej z wymiarami okna filtracyjnego. Dodatkową wadą tych filtrów jest ich nieskuteczność w redukcji szumu gaussowskiego. Niniejsza monografia stanowi podsumowanie wysiłku badawczego autora w dziedzinie filtracji szumów występujących w barwnych obrazach cyfrowych. W pracy przedstawiono różnorodne klasy filtrów zaprojektowanych do eliminacji zakłóceń impulsowych, szumów gaussowskich oraz najbardziej degradujących obraz szumów mieszanych. Przedstawione w monografii algorytmy cechują się bardzo dobrą efektywnością, przewyższającą znacznie algorytmy standardowe, oraz niską złożonością obliczeniową, umożliwiającą ich zastosowanie w realizacjach praktycznych, szczególnie w systemach wizyjnych czasu rzeczywistego. Rozdział pierwszy monografii stanowi wprowadzenie do problematyki przetwarzania barwnych obrazów cyfrowych. W rozdziale tym przedstawiono podstawowe koncepcje tworzenia wielokanałowego obrazu cyfrowego i jego filtracji, koncentrując się na problemie zakłóceń obrazu powstających w procesie jego akwizycji, przetwarzania, transmisji oraz przechowywania na nośnikach danych. W rozdziale tym wprowadzono modele szumów symulujących rzeczywiste zakłócenia oraz przedstawiono metody oceny jakości obrazów cyfrowych umożliwiające ewaluację efektywności różnorodnych metod redukcji artefaktów wywołanych przez zjawiska szumu. W rozdziale drugim przedstawiono przegląd adaptacyjnych technik redukcji szumów gaussowskich, impulsowych oraz mieszanych w obrazach z poziomami szarości. W rozdziale tym omówiono algorytmy oparte na koncepcji nieliniowej średniej ważonej oraz dokonano przeglądu metod bazujących na statystykach porządkowych. Szczególną uwagę poświęcono ważonej medianie oraz iteracyjnym algorytmom wyznaczania optymalnych współczynników wagowych ze względu na zastosowanie tych metod do optymalizacji filtrów wektorowych przedstawionych w rozdziale siódmym. Rozdział trzeci poświęcony jest omówieniu metod redukcji szumów występujących w barwnych obrazach cyfrowych. Szczegółowo opisano filtry oparte na statystykach porządkowych, transformacjach wykorzystujących koncepcje teorii zbiorów rozmytych, a także metody wykorzystujące estymację nieparametryczną. Szczególną uwagę poświęcono ważonej medianie wektorowej oraz zaproponowanej przez autora jej modyfikacji, prowadzącej do przyśpieszenia algorytmu oraz poprawy efektywności procesu filtracji. Rozdział czwarty, nawiązujący do rozdziału drugiego, poświęcony jest dyfuzji anizotropowej, stanowiącej skuteczną metodę redukcji szumów gaussowskich. W rozdziale tym przedstawione zostały wyniki prac autora nad modyfikacją algorytmu dyfuzji anizotropowej, poprzez minimalizację wpływu centralnego piksela maski filtracyjnej, umożliwiającą także redukcję szumów impulsowych. W rozdziale tym opisano ponadto opracowaną przez autora metodę iteracyjną, opartą na technice nieostrego maskowania, wykorzystującą tak zwaną dyfuzję odwrotną do poprawy jakości obrazów, które uległy kontaminacji szumem gaussowskim. Koncepcja minimalizacji wpływu centralnego piksela w masce filtracyjnej została rozwinięta w rozdziale piątym, w którym przedstawiono wyniki prac autora nad nową klasą filtrów opartych na ścieżkach cyfrowych i elementach teorii zbiorów rozmytych. Algorytmy redukcji szumów, wykorzystujące ideę eksploracji otoczenia centralnego piksela maski filtracyjnej przez ścieżki cyfrowe wyznaczające poprzez funkcję kosztu optymalne połączenia pikseli obrazu, cechują się świetną efektywnością redukcji szumów impulsowych, gaussowskich i mieszanych. Opracowane przez autora metody stanowią uogólnienie i rozwinięcie dyfuzji anizotropowej przedstawionej w rozdziale czwartym i stanowią jego najbardziej znaczący wkład w rozwój nieliniowych metod redukcji szumów w barwnych obrazach cyfrowych. Rozdział szósty poświęcony jest zastosowaniu estymacji nieparametrycznej do filtracji szumów impulsowych. W rozdziale tym przedstawiono ogólną koncepcję filtrów opartych na estymacie nieparametrycznej, wskazując na ich podobieństwo do mediany wektorowej, w przypadku gdy funkcja jądra ma postać funkcji liniowej. W rozdziale tym wprowadzono także rodzinę filtrów cechującą się dużą skutecznością w redukcji szumów impulsowych oraz zdolnością do zachowywania krawędzi obrazu i jego tekstury. Własności te osiągane są przez zaimplementowane mechanizmy adaptacyjne, dostosowujące parametry filtrów do struktur morfologicznych obrazu oraz poziomu jego zakłóceń. Na uwagę zasługuje mała złożoność obliczeniowa przedstawionych klas filtrów, pozwalająca na ich zastosowanie do przetwarzania obrazów w czasie rzeczywistym. W rozdziale siódmym przedstawiono nowe metody optymalizacji ważonej mediany wektorowej za pomocą optymalizacji liniowej oraz sigmoidalnej, omówionej w rozdziale drugim. Przedstawione metody optymalizacji, operujące zarówno na chrominancji, jak i na luminancji obrazu, prowadzą do wyznaczania optymalnych z punktu widzenia zadanej funkcji kosztu współczynników wektora wag. W rozdziale tym wprowadzono także adaptacyjną metodę eliminacji szumów impulsowych opartą na estymacji dyspersji elementów obrazu zawartych w oknie filtracyjnym. Ta nowa klasa filtrów, bazująca na koncepcji filtru typu sigma, charakteryzuje się dużą efektywnością redukcji szumów impulsowych oraz niską złożonością obliczeniową.
Rocznik
Tom
Strony
7--212
Opis fizyczny
Bibliogr. 430 poz.
Twórcy
autor
  • Instytut Automatyki Politechniki Śląskiej, 44-100 Gliwice, ul. Akademicka 16, tel. (032) 237-19-12, bogdan.smolka.@polsl.pl
Bibliografia
  • [1] J. Abbas, M. Domański, Median-based filters with prediction error processing for video restoration, Proc, of ISCAS, May 28-31, Geneva, Switzerland, 689-692, 2000.
  • [2] J. Abbas, M. Domański, Decision-based median-related filters for image and video restoration, Proc, of Int. Conf, on Signals and Electronic Systems (ICSE), Ustroń, Poland, 17-20 October, 181-186,2000.
  • [3] E. Abreu, S.K. Mitra, A signal-dependent rank-ordered mean (SD-ROM) filter - a new approach for removal of impulses from highly corrupted images, Proc, of International. Conf, on Acoustic, Speech and Signal Processing, 4, 2371-2374, 1995.
  • [4] E. Abreu, Signal-dependent rank-ordered mean (SD-ROM) filter, in [208], 2001.
  • [5] S.T. Acton, Multigrid anisotropic diffusion, IEEE Trans, on Image Processing, 7, 3, 280-291, 1998.
  • [6] M.A. Ajzerman, E.M. Braverman, L.I. Rozonoer, ’’Rozpoznawanie Obrazów - Metoda Funkcji Potencjalnych”, WNT, Warszawa 1976.
  • [7] L. Alparone, M. Bami, F. Bartolini, V. Cappellini, Adaptively weighted vector-median filters for motion-fields smoothing, Proc, of IEEE Int. Conf, on Acoustics, Speech and Signal Processing, 2267-2270, May 7-10, 1996.
  • [8] H. Altunbasak, H.J. Trussell, Colorimetric restoration of digital images, IEEE Trans, on Image Processing, 10, 393-402, 2001.
  • [9] L. Alvarez, F. Guichard, P.L. Lions, J.M. Morel, Image selective smoothing and edge detection by nonliner diffusion, SIAM J. Numer. Anal., 29, 3, 845-866, 1992.
  • [10] T.W Anderson, ”An Introduction to Multivariate Statistical Analysis”, New York, Wiley, 2nd edition, 1994.
  • [11] D. Androutsos, K.N. Plataniotis, A.N. Venetsanopoulos, A novel vector-based approach to color image retrieval using a vector angular-based distance measure, Computer Vision and Image Understanding, 1-2, 75, 46-58, 1999.
  • [12] G.R. Arce, N.C. Gallagher, T.A. Nodes, Median filters: theory and applications, in ’’Advances in Computer Vision and Image Processing”, (T.S. Huang, Ed.), II, JAI Press, 1986.
  • [13] G.R. Arce, Multistage order statistic filters for image sequence processing, IEEE Trans, on Signal Processing, 39, 1146-1163, 1991.
  • [14] G.R. Arce, T.A. Hall, K.E. Barner, Permutation weighted order statistic filter lattices, IEEE Trans, on Image Processing, 4, 1070-1083, 1995.
  • [15] G.R. Arce, A generalized weighted median filter structure admitting negative weights, IEEE Trans, on Signal Processing, 46, 3195-3205, 1998.
  • [16] G. R. Arce, J. Paredes, Image enhancement with weighted medians, in [208], 27-67, 2001.
  • [17] A. Asano, K. Itoh, Y. Ichioka, Optimization of the weighted median filter by learning, Optics Letters, 16, 3, 168-170, 1991.
  • [18] J. Astola, P. Haavisto, Y. Neuovo, Median type filters for color signals, Proc, of the Int. Symp. on Circuits and Systems, Helsinki, June 7-9, 2, 1753-1756, 1988.
  • [19] J. Astola, P. Haavisto, Y. Neuvo, Vector median filters, Proc, of the IEEE, 78, 4, 678-689, 1990.
  • [20] J. Astola, P. Kuosmanen, ’’Fundamentals of Nonlinear Digital Filtering”, CRC Press, 1997.
  • [21] J. Astola, D. Akopian, O. Vainio, S. Agaian, New digit-serial implementations of stack filters, Signal Processing, 61, 181-197, 1997.
  • [22] J. Astola, D. Akopian, A time-recursive implementation of threshold boolean filters, IEEE Trans, on Circuits and Systems - П, 46, 139-148, 1999.
  • [23] V. Aurich, J. Weule, Non-liner gaussian filters performing edge preserving diffusion, DAGM-Symposium 1995, Proceedings in Informatik Aktuell, Springer, 538-545, 1995.
  • [24] I. Avcibas, B. Sankur, K. Sayood, Statistical evaluation of image quality measures, Journal of Electronic Imaging, 11,206-223, 2002.
  • [25] G.J. Awcock, R. Thomas, ’’Applied Image Processing”, Macmillan, 1995.
  • [26] G.A Babich, O.I. Camps, Weighted Parzen windows for pattern classification, IEEE Trans, on РАМІ, 18, 5, 567-570, 1996.
  • [27] P. Bakker, L.J. van Vliet, P.W. Verbeek, Edge preserving orientation adaptive filtering, Proc, of the 5th Annual Conf, of the Advanced School for Computing and Imaging (ASCI), Heijen, Netherlands, 207-213, June 15-17, 1999.
  • [28] D. Barash, A fundamental relationship between bilateral filtering, adaptive smoothing, and the nonlinear diffusion equation, IEEE Trans, on РАМІ, 24, 6, 844-847, 2002.
  • [29] A.J. Bardos, S.J. Sangwine, Selective vector median filtering of colour images, Proc, of the 6th IEE Int. Conf, on Image Processing and its Applications, Dublin, Ireland, 708-711, 1997.
  • [30] K.E. Barner, G.R. Arce, Permutation filters: a class of nonlinear filters based on set permutations, IEEE Trans, on Signal Processing, 42, 4, 782-798, 1994.
  • [31] K.E. Barner, R.C. Hardie, Extended permutation filters and their application to edge enhancement, IEEE Trans, on Image Processing, 5, 855-867, 1996.
  • [32] K.E. Barner, G.R. Arce, Design of permutation order-statistic filters through group colorings, IEEE Trans, on Circuits and Systems, 44, 7, 531-548, 1997.
  • [33] K.E. Barner, R.C. Hardie, Spatial-rank order selection filter, in [208], 2001.
  • [34] K.E. Barner, G.R Arce, ’’Nonlinear Signal and Image Processing”, CRC Press, Boca Raton, 2004
  • [35] V. Barnett, The ordering of multivariate data. Journal of the Royal Statistical Society, A 139, III, 318-355, 1976.
  • [36] V. Barnett, T. Lewis, ’’Outliers in Statistical Data”, Wiley, 1994.
  • [37] M. Ваті, V. Cappellini, A. Mecocci, Fast vector median filter based on Euclidean norm approximation, IEEE Signal Processing Letters, 1, 6, 92-94,1994.
  • [38] M. Ваті, V. Cappellini, On the computational complexity of multivariate median filters, Signal Processing, 71, 45-54, 1998.
  • [39] М. Ваті, Е Bartolini, V. Capellini, Image processing for virtual restoration of artworks, IEEE Multimedia, 7, 34-37, April-June 2000.
  • [40] M. Bartkowiak, M. Domański, Vector median filters for processing of color images in various color spaces. Proc, of the 5th Int. Conf, on Image Processing and its Applications, IEE, Edinburgh, UK, 833-836, 1995.
  • [41] M. Basu, M. Su, Image smoothing with exponential functions, Int. Journal of Pattern Recognition and Artificial Intelligence, 15, 4, 735-752, 2001.
  • [42] A. Beghdadi, K. Khellaf, A noise-filtering method using a local information measure, IEEE Trans, on Image Processing, 6, 879-882, 1997.
  • [43] R. Berstain, Adaptive nonlinear filters for simultaneous removal of different kinds of noise in images, IEEE Trans, on Circuits and Systems, 34, 1275-1291, 1987.
  • [44] J.C. Bezdek, S.K. Pal (Eds.), ’’Fuzzy Models for Pattern Recognition”, IEEE Press, 1992.
  • [45] S. Biswas, N.R. Pal, S.K. Pal, Smoothing of digital images using the concept of diffusion process, Pattern Recognition, 29, 3, 497-510, 1996.
  • [46] M.J. Black, G. Sapiro, D.H. Marimont, D. Heeger, Robust anisotropic diffusion, IEEE Trans, on Image Processing, 7, 3, 421-432, 1998.
  • [47] M.J. Black, G. Sapiro, Edges as outliers: anisotropic smoothing using local image statistics, Lecture Notes in Computer Science, 1682, 259-270, 1999.
  • [48] P. Blomgren, T.F. Chan, Color tv: total variation methods for restoration of vector-valued images, Special Issue on Partial Differential Equations and Geometry Driven Diffusion in Image Processing and Analysis, IEEE Trans, on Image Processing, 7, 3, 304-309, 1998.
  • [49] C. Boncelet, Image noise models, in ’’Handbook of Image and Video Processing”, (Ed. A. Bovik), Academic Press, 2000.
  • [50] G. Borgefors, Distance transformations in arbitrary dimensions, Computer Vision, Graphics and Image Processing, 27, 321-345, 1984.
  • [51] G. Borgefors, Distance transformations in digital images, Computer Vision, Graphics and Image Processing, 34, 344-371, 1986.
  • [52] R.M. Boynton, "Human Color Vision”, Halt, Rinehart and Winston, 1990.
  • [53] P.A. Bromiley, N.A. Thacker, P. Courtney, Colour image segmentation by non-parametric density estimation in colour space, Proc, of the British Machine Vision Conf. (BMVC), Manchester, July 2001.
  • [54] D.R.K. Brownrigg, The weighted median filter, Commun. of Assoc. Computers, 807-818, 1984.
  • [55] P.D. Bums, Image signal modulation and noise characteristics of charge-coupled device imagers, Proc, of SPIE, 1071, 144-152, 1989.
  • [56] T. Cacoullos, Estimation of a multivariate density, Ann. Inst. Stat. Math., 18, 179-189, 1966.
  • [57] J. Canny, A computational approach to edge detection, IEEE Trans, on РАМІ, 8, 6, 679-698, 1986.
  • [58] R.A. Carmona, S. Zhong, Adaptive smoothing respecting feature directions, IEEE Trans, on Image Processing, 7, 3, 353-358, 1998.
  • [59] K.R. Castleman, "Digital Image Processing”, Prentice Hall, Toronto, 1996.
  • [60] F. Cattć, F. Dibos, G. Koepfler, Image selective smoothing and edge detection by nonliner diffusion, SIAM Journal of Numer. Anal., 1, 29, 182-193, 1992.
  • [61] F. Catté, P.L. Lions, J.M. Morel, T. Coll, Image selective smoothing and edge detection by nonlinear diffusion - II, SIAM Journal of Numer. Anal., 29, 3, 845-866, 1992.
  • [61] F. Catté, P.L. Lions, J.M. Morel, T. Coll, Image selective smoothing and edge detection by nonlinear diffusion - II, SIAM Journal of Numer. Anal., 29, 3, 845-866, 1992.
  • [62] T.F. Chan, J. Shen, L. Vese, Variational PDE models in image processing, Notices of the American Mathematical Society, 1, 50,14-26, 2003.
  • [63] P. Charbonnier, G. Aubert, M. Blanc-Ferraud, M. Barlaud, Two deterministic half-quadratic regularization algorithms for computed imaging, Proc, of IEEE Int. Conf, on Image Processing (ICIP), 168-172, Austin (Texas), November 1994.
  • [64] D. Chaudhuri, C.A. Murthy, B.B. Chaudhuri, A modified metric to compute distances, Pattern Recognition, 25, 7, 667-677, 1992.
  • [65] K. Chen, Bit-serial realizations of a class of nonlinear filters based on positive boolean functions, IEEE Trans, on Circuits and Systems, 36, 785-794, 1989.
  • [66] C.H. Chen, L.F. Pau, P.S.P. Wang, ’’Handbook of Pattern Recognition and Computer Vision”, World Scientific, 1993.
  • [67] T. Chen, K.K. Ma, L.H. Chen, Tri-state median filter for image denoising, IEEE Trans, on Image Processing, 8, 12, 1834-1838, 1999.
  • [68] T. Chen, H.R. Wu, Adaptive impulse detection using center-weighted median filters, IEEE Signal Processing Letters, 8, 1, 1-3, 2001.
  • [69] H. Chen, P. Meer, Robust computer vision through kernel density estimation. Lecture Notes in Computer Science, LNCS 2350, 236-250, 2002.
  • [70] K. Chen, A feature-preserving adaptive smoothing method for early vision, Technical Report, National Laboratory of Machine Perception and Center for Information Science, Peking University, Beijing, China.
  • [71] A. Chydzinski, B. Smolka. Self-avoiding walks on the lattice Z2 with 8 neighbourhood systems, Applicationes Mathematicae, 28, 2,169-180, 2001.
  • [72] M. Ciuc, R.M. Rangayyan, T. Zaharia, V. Buzuloiu, Adaptive neighborhood for color image filtering, Proc, of SPIE, 3304, 277-286, 1998
  • [73] C. Connoly, T. Flies, A study of efficiency and accuracy in the transformation from RGB to CIELAB color space, IEEE Trans, on Image Processing, 6, 1046-1048, 1997.
  • [74] N. Cooharojananone, K. Aizawa, Cumulative angular distance measure for color indexing, IEICE Trans, on Inf. and Systems, E84-D, 4, 537-540, 2001.
  • [75] E.J. Coyle, J.H. Lin, M. Gabbuoj, Optimal stack filtering and the estimation and structural approaches to image processing, IEEE Trans, on Acoustics, Speech, and Signal Processing, 37, 2037-2066, 1989.
  • [76] N. Cuisenaire, Distance transformations: fast algorithms and applications to medical image processing, PhD Thesis, Universitě catholique de Louvain, Belgium, October 1999.
  • [77] C.S. McCumin, L.C. Schooley, G.R. Sims, Charge-coupled-device signal processing models and comparisons, Journal of Electronic Imaging, 2, 100-107, 1993.
  • [78] H.A. David, ’’Order Statistics”, Wiley, New York, 1981.
  • [79] E.R. Davies, Accuracy of multichannel median filter, Electronics Letters, 36, 25, 2000.
  • [80] E.R. Davies, Image distorsions produced by mean, median and mode filters, IEE Digest 1998/284, 1-5, Colloquium on Non-Linear Signal and Image Processing, May, 1998.
  • 81. L.S. Davis, A. Rosenfeld, Noise cleaning by iterated local averaging, IEEE Trans, on Syst. Man. Cybem., 8,705-710, 1978.
  • 82. R. Deriche, O. Faugeras, Les edp en traitement des images et vision par ordinateur, Technical Report 2697 ofINRIA, 1995.
  • 83. M. Desbrun, M. Meyer, P. Schröder, A.H. Barr, Anisotropic feature-preserving denoising of height fields and bivariate data, Proc, of Graphics Interface, Montreal, Quebec, Canada, 145-152, 15-17 May 2000.
  • 84. R. Diestel, ’’Graph Theory”, Electronic Edition, Springer Verlag, New York, 2000.
  • 85. Y. Dodge, V. Rousson, Multivariate Li mean, Metrika, 49, 127-134, 1999
  • 86. M. Domański, Zaawansowane Techniki Kompresji Obrazów i Sekwencji Wizyjnych, WPP, Poznań 1998, 2000.
  • 87. M. Domański, J.K. Abbas, A family of efficient nonlinear filters for video restoration, Machine Graphics & Vision, 9, 1-2, 353-361, 2000.
  • 88. M. Domański, J.K. Abbas, Median-based filters with prediction error processing for video restoration, IEEE Int. Symp. on Circuits and Systems, Geneva, 4, 689-692, 2000.
  • 89. M. Domański, J.K. Abbas, Decision-based median-related filters for image and video restoration, Int. Conf, on Signals and Electronic Systems (ICSES), Ustroń, Poland, 17-20, October 2000.
  • 90. J. Dopazo, Microarray data processing and analysis, in ’’Microarray Data Analysis”, (Eds. S.M. Lin, K.F. Johnson), Kluwer Academic, 2002.
  • 91. R.O. Duda, P.E. Hart, ’’Pattem Classification and Scene Analysis”, Wiley, New York, 1973.
  • 92. R.O. Duda., P.E. Hart, D.G. Stork, ’’Pattern Clasiffication”, Wiley, New York, 2001.
  • 93. R.P.W. Duin, On the choice of smoothing parameters for Parzen estimators of probability density functions, IEEE Trans, on Comput. 25, 1175-1179, 1976.
  • 94. S.A. Durrani, The distance-weighted к-nearest neighbor rule, IEEE Trans, on Systems, Man and Cybernetics, 15, 630-636, 1977.
  • 95. M.B. Eisen, P.O. Brown, DNA arrays for analysis of gene expression, Methods in Enzymology, 303, 179-205, 1999.
  • 96. H.L. Eng, K.K. Ma, Noise adaptive soft-switching median filter, IEEE Trans, on Image Processing, 10, 2,242-251,2001.
  • 97. M. Fischer, J.L. Paredes, G.R. Arce, Weighted median image sharpeners for the world wide web, IEEE Trans, on Image Processing, 11,7, 717-727, 2002.
  • 98. B. Fischl, E.L. Schwartz, Learning an integral equation approximation to nonlinear anisotropic diffusion in image processing, IEEE Transactions on РАМІ, 19, 4, 342-352, 1997.
  • 99. W. Forstner, Image preprocessing for feature extraction in digital intensity, color and range images, Proc, of the Summer School on Data Analysis and the Statistical Foundations of Geomatics, Crete, Greece, May 25-30, 1998.
  • 100. M.F.A. Fortier, D. Ziou, C. Armenakis, S. Wang, Nouvelles perspectives en detection de contours: Textures et images multispectrales, Proc, of Vision Interface, Trois-Rivieres, Canada, 19-21 May, 1999.
  • 101. A. Fotinos, N. Laskaris, S. Fotopoulos, Fuzzy color filtering using potential functions, Int. Conf, on Digital Signal Processing (DSP), Santorini, Greece, July 2-4, 1997.
  • 102. A. Fotinos, N. Laskaris, S. Fotopoulos, fuzzy color filtering using relative entropy, Proc, of EU- SIPCO, Rhodes, Greece, 809-812, 8-11 September 1998.
  • 103. F. Fotinos, N. Laskaris, G. Economou, S. Fotopoulos, Multidimensional fuzzy filtering using statistical parameters, Multidimensional Systems and Signal Processing, 10, 415-424, 1999.
  • 104. K. Fukunaga, ’’Introduction to Statistical Pattern Recognition”, Academic Press, London, 1990.
  • 105. M. Gabbouj, E.J. Coyle, N.C. Gallager, An overview of median and stack filtering. Circuit Syst. and Signal Processing, 11,1, 7-45, 1992.
  • 106. M. Gabbouj, F.A. Cheickh, Vector median - vector directional hybrid filter for colour image restoration, Proc, of EUSIPCO, Trieste, Italy, September 10-13, 879-881, 1996.
  • 107. L. Gajek, M. Kałuszka, ’’Wnioskowanie Statystyczne, Modele i Metody”, WNT, Warszawa, 2000.
  • 108. N.C. Gallagher, Median filters: a tutorial, Proc, of ISCAS, 1737-1745, 1988.
  • 109. C. Garnica, F. Boochs, M. Twardochlib, A new approach to edge-preserving smoothing for edge extraction and image segmentation, Proc, of IAPRS, 32, Amsterdam, 2000.
  • 110. S. Geman, G. Reynolds, Constrained restauration and the recovery of discontinuities, IEEE Trans, on РАМІ, 14, 3, 367-383, 1992.
  • 111. A.T. Georgiadis, ’’Adaptive equalisation for impulsive moise environments”, PhD Thesis, The University of Edinburgh, 2000.
  • 112. G. Gerig, R. Kikinis, O. Kuebler, F. Jolesz, Nonlinear anisotropic filtering of MRI data, IEEE Trans, on Medical Imaging, 11, 2, 221-232, 1992.
  • 113. G. Gilboa, Y. Zeevi, N. Sochen, Anisotropic selective inverse diffusion for signal enhancement in the presence of noise. Proc, of ICASSP, Istanbul, Turkey, I, 211-224, June 2000.
  • 114. G. Gilboa, Y. Zeevi, N. Sochen, Signal and image enhancement by a generalized forward-and- backward adaptive diffusion process. Proc, of EUSIPCO, Tampere, Finland, September 2000.
  • 115. G. Gilboa, Y. Zeevi, N. Sochen, Resolution enhancement by forward-and-backward nonlinear diffusion processes, Proc, of the Nonlinear Signal and Image Processing Conf. (NSIP), Baltimore, Maryland, June 2001.
  • 116. G. Gilboa, N. Sochen, Y.Y. Zeevi, A forward-and-backward diffusion process for adaptive image enhancement and denoising, IEEE Trans, on Image Processing, 11,7, 689-703, July 2002.
  • 117. J. Gomes, L. Velho, ’’Image Processing for Computer Graphics”, Springer Verlag, 1997.
  • 118. R.C. Gonzalez, R.E. Woods, ’’Digital Image Processing”, Addisson Wesley, Reading MA, 1992.
  • 119. P.J. Green, Bayesian reconstruction from emission tomography data using a modified em algorithm, IEEE Trans, on Med. Imaging, 9, 84-93, 1990.
  • 120. S. Guillon, P. Baylou, M. Najim, N. Keskes, Adaptive non-linear filters for 2D and 3D image enhancement. Signal Processing, 67, 237-254, 1998.
  • 121. P. Haavisto, P. Heinonen, Y. Neuovo, Vector FIR-Median hybrid filters for multispectral signals, Electronics Letters, 24,7-8,1988.
  • 122. A. Ben Hamza, H. Krim, Image denoising: a nonlinear robust statistical approach, IEEE Trans, on Signal Processing, 49, 12, 3045-3054, 2001.
  • 123. R.C. Hardie, G.R. Arce, Ranking in Rp and its use in multivariate image estimation, IEEE Trans, on Circuits and Systems for Video Technology, 1, 2, 197-209, 1991.
  • 124. R.C. Hardie, C.G. Boncelet, LUM filters: a class of rank-order-based filters for smoothing and sharpening, IEEE Trans, on Signal Processing, 41, 3, 1061-1076, 1993.
  • 125. R.C. Hardie, K.E. Barner, Rank conditioned rank selection filters for signal restoration, IEEE Trans, on Image Processing, 3, 2, 192-206, 1994.
  • 126. R.C. Hardie, C.G. Boncelet, Gradient-based edge detection using nonlinear edge enhancing prefilters, IEEE Trans, on Image Processing, 4, 1572-1577, 1995.
  • 127. W. Häerdle, ’’Smoothing Techniques With Implementations in S”, Springer, New York, 1991.
  • 128. W. Härdle, M. Müller, Multivariate and Semiparametric Kernel Regression, Sonderforschungsbereich 373, 1997-26, Humboldt Universitaet Berlin, 1997.
  • 129. Y. Hashimoto, Y. Kajikawa, Y. Nomura, Directional difference-based switching median filters, Electronics and Communications in Japan, III, 85, 3, 22-32, 2002.
  • 130. Y. Hashimoto, Y. Kajikawa, Y. Nomura, Directional difference filters: its effectiveness in the postprocessing of noise detectors, Electronics and Communications in Japan, III 3, 85, 2, 74-82, 2002.
  • 131. K.J. Hermiston, D.M. Booth, NIRS and objective quality measures, Lecture Notes in Computer Science, LNCS 1689, 385-394, 1999.
  • 132. J. Immerkaer, Use of blur-space for deblurring and edge-preserving noise smoothing, IEEE Trans, on Image Processing, 10, 6, 837-840, 2001.
  • 133. B. Jähne, ’’Practical Handbook on Image Processing for Scientific Applications”, CRC Press, Boca Raton, FL, 1997.
  • 134. B. Jeon, D.A. Landgrebe, Fast Parzen density estimation using clustering-based branch and bound, IEEE Trans, on РАМІ, 16, 9, 950-954, 1994.
  • 135. A.R. Jimenez, R. Ceres, J.L. Pons, A new adaptive filter and quality evaluation index for image restoration, Pattern Recognition, 34, 457-467, 2001.
  • 136. T.E. Jenkins, ’’Optimal Sensing Techniques and Signal Processing”, Prentice Hall, 1987.
  • 137. D.G. Karakos, P.E. Trahanias, Combining vector median and vector directional filters: the directional-distance filters, Proc, of the IEEE Int. Conf, on Image Processing (ICIP), Washington DC, 171-174, October 1995.
  • 138. D. Karakos, P.E. Trahanias, Generalized multichannel image filtering structures, IEEE Trans, on Image Processing, 6, 7, 1038-1045, 1997.
  • 139. A.J. Kasiński, Smoothing noisy images without destroying predefined feature carriers, Lecture Notes in Computer Science, LNCS 1296, 519-526, 1997.
  • 140. V. Katkovnik, I. Shmulevich, Kernel density estimation with adaptive varying window size, Pattern Recognition Letters, 23, 1641-1648, 2002
  • 141. V. Kayargadde, J.B. Martens, An objective measure for perceived noise. Signal Processing, 49, 3, 187-206, 1996.
  • 142. S.L. Keeling, R. Stollberger, Nonlinear anisotropic diffusion filtering for multiscale edge enhancement, Inverse Problems, 18, 175-190, 2002.
  • 143. L. Khriji, M. Gabbouj, Vector median-rational hybrid filters for multichannel image processing, IEEE Signal Processing Letters, 6, 7, 186-190, 1999.
  • 144. L. Khriji, M. Gabbouj, Adaptive fuzzy order statistics-rational hybrid filters for color image processing, Fuzzy Sets and Systems, 128, 35-46, 2002.
  • 145. L. Khriji, M. Gabbouj, Rational-based adaptive fuzzy filters, Int. Journal of Computational Cognition, 2, 1, 113-132, 2004.
  • 146. H.M. Kim, B. Kosko, Fuzzy Filters for Impulsive Noise, in B. Kosko, (Ed.), ’’Fuzzy Engineering”, 251-275, Prentice-Hall, Englewood Cliffs, New Jersey, 1997.
  • 147. B.B. Kimia, K. Siddiqi, Geometric heat equation and nonlinear diffusion of shapes and images, Computer Vision and Image Understanding, 64, 3, 305-322, 1996.
  • 148. R. Kimmel, R. Malladi, N. Sochen, Images as embedded maps and minimal surfaces: movies, color, texture, and volumetric medical images, Int. Journal of Computer Vision, 39, 2, 111-129, 2000.
  • 149. C.O. Kiselman, Regularity properties of distance transformations in image analysis, Computer Vision and Image Understanding, 64, 3, 390-398, 1996.
  • 150. R. Klette, P. Zamperoni, ’’Handbuch der Operatoren fur die Bildverarbeitung”, Vieweg, Wiesbaden, 1992.
  • 151. S.J. Ko, Y.H. Lee, Center weighted median filters and their application to image enhancement, IEEE Trans, on Circuits and Systems, 38, 9, 984-993, 1991.
  • 152. V. Kober, M. Morozov, J. Alvarez-Borrego, Nonlinear filters with spatially connected neighborhoods, Optical Engineering, 40, 6, 971-983, 2001.
  • 153. A. Kokaram, ’’Motion Picture Restoration”, Springer-Verlag, Berlin, 1998.
  • 154. T.Y. Kong, A. Rosenfeld, "Topological Algorithms for Digital Image Processing”, Elsevier, Amsterdam, 1996.
  • 155. A. Koschan, M. Abidi, A comparison of median filter techniques for noise removal in color images, Proc, of the 7th German Workshop on Color Image Processing, D. Paulus, J. Denzler (Eds.), Erlangen, Germany, Report of University of Erlangen-Numberg, Institute of Computer Science, 34, 15,69-79, October 2001.
  • 156. C. Kotropoulos, I. Pitas, Multichannel L filters based on marginal data ordering, IEEE Trans, on Signal Processing, 42, 10, 2581-2595, 1994.
  • 157. C. Kotropoulos, I. Pitas, ’’Nonlinear Model-Based Image and Video Processing and Analysis”, Willey, 2001.
  • 158. M.A. Kraaijveld, A Parzen classifier with an improved robustness against deviations between training and test data, Pattern Recognition Letters, 17, 679-689, 1996.
  • 159. K. Knssian, G. Malandain, N. Aayache, Directional anisotropic diffusion applied to segmentation of vessels in 3D images, Technical Report 3064, INRIA, 1996.
  • 160. K. Krissian, Flux-based anisotropic diffusion applied to enhancement of 3D angiograms, IEEE Trans, on Medical Imaging, 21, 11, 1-4, 2002.
  • 161. D.T. Kuan, A.A. Sawchuk, T.C. Strand, P. Chavel, Adaptive noise smoothing filter for images with signal-dependent noise, IEEE Trans on РАМІ, 7, 2, 165-177, 1985.
  • 162. P. Kuosmanen, Statistical analysis and optimization of stack filters, Acta Polytechnica Scandinav- ica, EI77, 1994.
  • 163. M. Kuwahara, K. Hachimura, S. Eiho, M. Kinoshita, ’’Digital Processing of Biomedical Images”, Plenum Press, New York, 187-203, 1976.
  • 164. J.S. Lee, Digital image enhancement and noise filtering by use of local statistics, IEEE Trans, on РАМІ, 2, 2, 165-168, 1980.
  • 165. J.S. Lee, Refined filtering of image noise using local statistics, Computer Graphics and Image Processing, 15, 380-389, 1981.
  • 166. J.S. Lee, Digital image smoothing and the sigma filter, Computer Vision, Graphics, and Image Processing, 24, 255-269, 1983.
  • 167. L. Levi, Unsharp masking and related image enhancement techniques, Computer Graphics and Image Processing, 3, 163-177, 1974.
  • 168. X. Li, T. Chen, Nonlinear diffusion with multiple edginess thresholds, Pattern Recognition, 27, 1029-1037, 1994.
  • 169. X. Li, D. Lu, Y. Pan, Color restoration and image retrieval for Donhunag fresco preservation, IEEE Multimedia, 7, 38-42, 2000.
  • 170. R.S. Lin, Y.C. Hsueh, Multichannel filtering by gradient information, Signal Processing, 80, 2, 279-293, 2000.
  • 171. P.Y Liu, H.X Li, Fuzzy techniques in image restoration research - a survey, Int. Journal of Computational Cognition, 2, 2, 131-149, 2004.
  • 172. G. Lohman, ’’Volumetric Image Analysis”, Wiley & Teubner, 1998.
  • 173. A. Lopes, R. Touzi, E. Nezry, Adaptive speckle filters and scene heterogeneity, IEEE Trans, on Geoscience and Remote Sensing, 28, 6, 992-1000, 1990.
  • 174. D.B. Lopez, F.H. Mendoza, J.M. Ramirez, Noise in color digital images, Proc, of the Midwest Symp. on Circuits and systems, 403-406, August 1999.
  • 175. M. Lucassen, P. Bijl, The CIE94 colour difference formula for describing visual detection thresholds in static noise, Second European Conference on Color in Graphics, Imaging and Vision (CGIV), Aachen, Germany, 8-11, April 5-8, 2004.
  • 176. L. Lucat, P. Siohan, Vector-Median type filters and fast-computation algorithms, IEEE Int. Symp. on Circuits and Systems, Hong Kong, June 9-12, 1997.
  • 177. L. Lucat, P. Siohan, D. Barba, Adaptive and global optimization methods for weighted vector median filters, Signal Processing: Image Communications, 17, 509-524, 2002.
  • 178. R. Lukac, S. Marchevsky, Boolean expression of LUM smoothers, IEEE Signal Processing Letters, 8, 292-294, 2001.
  • 179. R. Lukac, S. Marchevsky, LUM smoother with smooth control for noisy image sequences, EURASIP Journal of Applied Signal Processing, 2, 110-120, 2001.
  • 180. 180] R. Lukac, Adaptive impulse noise filtering by using center-weighted directional information, Proceedings of the CGIV Conference, Poitiers, France, 86-89, 2002.
  • 181. R. Lukac, Adaptive LUM smoother for noisy watermarked images, Pattern Recognition and Image Analysis, 12, 448-454, 2002.
  • 182. R. Lukac, Binary LUM smoothing, IEEE Signal Processing Letters, 9, 400-403, 2002.
  • 183. R. Lukac, Color image filtering by vector directional order-statistics, Pattern Recognition and Image Analysis, 12, 3, 279-285, 2002.
  • 184. R. Lukac, Optimised directional distance filter, Machine Graphics and Visions: Special Issue on Colour Image Processing and Applications, 11, 2/3, 311 -326, 2002.
  • 185. R. Lukac, B. Smolka. P. Galajda, Hearth dynamics filtered by optimised adaptive median. Proceedings of the International Federation for Medical & Biological Engineering, 2nd European Medical & Biological Engineering Conference (EMBEC), Vienna, Austria, III, 2, 954-955, December 4-8, 2002.
  • 186. R. Lukac, В. Smolka. K.N. Plataniotis, A.N. Venetsanopoulos, Sigmoidal weighted vector directional filter, Lecture Notes in Computer Science, LNCS 2626, 418-427, 2003.
  • 187. R. Lukac, B. Smolka. K.N. Plataniotis, A.N. Venetsanopoulos, P. Zavarsky, Angular Multichannel Sigma Filter, Proceedings of the 28th IEEE International Conference on Acoustic, Speech & Signal Processing (ICASSP), Hong Kong, III, 745-748, April 6-10, 2003.
  • 188. R. Lukac. B. Smolka. T. Terpo, Genetic optimization of weighted vector directional filters, Pattern Recognition and Image Analysis, 14, 1, 4049, 2004.
  • 189. R. Lukac, B. Smolka. K.N. Plataniotis, A.N. Venetsanopulos, Selection weighted vector directional filters, Computer Vision and Image Understanding, 94, 140-167, 2004.
  • 190. R. Lukac, B. Smolka. K.N. Plataniotis, A.N Venetsanopoulos, New approach to the impulsive noise removal in microarray images, Proceedings of 5th IFAC Symposium 2003 on Modelling and Control in Biomedical Systems, Melbourne, Australia, 145-150, (Elsevier), August 21-23, 2003.
  • 191. R. Lukac, K.N. Plataniotis, A.N. Venetsanopoulos, R. Bieda, В. Smolka. Color edge detection techniques, in ’’Signaltheorie und Signalverarbeitung, Akustik und Sprachakustik, Informationstechnik”, Studientexte zur Sprachkommunikation, W.E.B. Universität Verlag, Dresden, 21-47, 29, 2003.
  • 192. R. Lukac, B. Smolka. K.N. Plataniotis, A.N. Venetsanopoulos, P. Zavarsky, Angular multichannel sigma filter, Proceedings of the ICASSP, Hong Kong, III, 745-748, April 2003.
  • 193. R. Lukac, B. Smolka. Application of the adaptive center-weighted vector median framework for the enhancement of cDNA microarray images, International Journal of Applied Mathematics and Computer Science, 13, 101-115, 2003.
  • 194. R. Lukac, B. Smolka. K.N. Plataniotis, A.N. Venetsanopoulos, Entropy vector median filter, Lecture Notes in Computer Science, LNCS 2652, 1117-1125, 2003.
  • 195. R. Lukac, B. Smolka. K.N. Plataniotis, A.N. Venetsanopoulos, Generalized adaptive vector sigma filters. Proceedings of the IEEE International Conference on Multimedia and Expo (ICME), Baltimore, USA, 537-540, July 2003.
  • 196. R. Lukac, B. Smolka. K.N. Plataniotis, A.N. Venetsanopoulos, Entropy vector median filter, Lecture Notes in Computer Science, LNCS 2652, 1117-1125, 2003.
  • 197. R. Lukac, B. Smolka. K.N. Plataniotis, A.N. Venetsanopoulos, A variety of multichannel sigma filters. Proceedings of SPIE 5146, 244-253, 2003.
  • 198. R. Lukac, B. Smolka. A. Swiemiak, K.N. Plataniotis, A.N. Venetsanopoulos, Weighted vector directional filters optimized by genetic algorithms, Lecture Notes in Computer Science, LNCS 3019, 595-600, 2003.
  • 199. R. Lukac, B. Smolka. A. Swiemiak, K.N. Plataniotis, A.N. Venetsanopoulos, Adaptive noise reduction in DNA microarray images based on the center-weighted vector median filters, Lecture Notes in Computer Science, LNCS 3019, 714-721,2003.
  • 200. R. Lukac, B. Smolka. K.N. Plataniotis, A.N. Venetsanopoulos, Color image filtering and enhancement, IEEE Signal Processing Magazine, Special Issue on Color Image Processing, (invited paper), to appear in 2004.
  • 201. J. Maeda, T. Iizawa, T. Ishizaka, C. Ishikawa, Y. Suzuki, Segmentation of natural images using anisotropic diffusion and linking of boundary edges, Pattern Recognition, 31, 12, 1993-1999, 1998.
  • 202. N. Madras, G. Slade, ’’The Self-Avoiding Walk”, Boston, Birkhauser, 1993.
  • 203. M. Mahy, L. van Eyckden, A. Oosterlinck, Evaluation of uniform color spaces developed after the adoption of CIELAB and CIELUV, Color Research and Application, 19, 105-121, April 1994.
  • 204. O.L. Mangasarian, D.R. Musicant, Robust linear and support vector regression, IEEE Trans, on РАМІ, 22, 9, 950-955, 2000.
  • 205. K.V. Mardia, J.T. Kent, J.M. Bibby, ’’Multivariate Analysis”, Academic Press, 1979.
  • 206. G.A. Mastin, Adaptive filters for digital image noise smoothing: an evaluation, Computer Vision, Graphics and Image Processing, 31, 103-121, 1985.
  • 207. M.J. McDonnell, Box-filtering techniques, Computer Graphics and Image Processing, 17, 65-70, 1981.
  • 208. S. Mitra, J. Sicuranza, ’’Nonlinear Image Processing, (Communications, Networking and Multimedia)”, Academic Press, 2001.
  • 209. M.S. Moore, S.K. Mitra, Performance analysis of the two-state signal-dependent rank order mean filter, Proc, of the 10th IS&T/SPIE Conf, on Nonlinear Image Processing, San Jose, CA, January 1999.
  • 210. M.S. Moore, M. Gabbouj, S.K. Mitra, Vector SD-ROM filter for removal of impulse noise from color images, Proc, of the Second EURASIP Conf. (ECMCS), Kraków, 24-26 June, 1999.
  • 211. J.M. Morel, S. Solimini, ’’Variational Methods in Image Segmentation”, Birkhäuser, Boston, MA, 1995.
  • 212. S. Mustonen, A measure for total variability in multivariate normal distribution, Computational Statistics and Data Analysis, 23, 321-334, 1997.
  • 213. M. Nagao, T. Matsuyama, Edge preserving smoothing, Computer Graphics and Image Processing, 9, 394-407, 1979.
  • 214. M. Nagao, T. Matsuyama, ”A Structural Analysis of Complex Aerial Photographs”, Plenum Press, New York, 1980.
  • 215. A. Nieminen, P. Heinonen, Y. Neuovo, A new class of detail preserving filters for image processing, IEEE Trans, on РАМІ, 9, 74-90, 1987.
  • 216. N. Nikolaidis, I. Pitas, Directional statistics in nonlinear vector field filtering, Signal Processing, 38, 3, 299-316, 1994.
  • 217. N. Nikolaidis, I. Pitas, Multichannel L filters based on reduced ordering, IEEE Trans, on Circuits and Systems for Video Technology, 6, 5, 470-482, 1996.
  • 218. N. Nikolaidis, I. Pitas, Nonlinear processing and analysis of angular signals, IEEE Trans, on Signal Processing, 46, 3181-3194, 1998.
  • 219. N. Nordstrom, Biased anisotropic diffusion - a unified regularization and diffusion approach to edge detection, Image and Vision Computing, 8, 4, 318-327, 1990.
  • 220. K. Öistämo, Y. Neuovo, Video signal processing using vector median, Proc, of SPIE, 1360, 1171- 1183, 1990.
  • 221. S. Osher, L.I. Rudin, Feature-oriented image enhancement using shock filters, SIAM Journal on Numerical Analysis, 27, 4, 919-940, 1990.
  • 222. H. Palus, Colour spaces, in [271], 67-89, 1998.
  • 223. J. Park. L. Kurz, Image enhancement using the modified ICM method, IEEE Trans, on Image Processing, 5, 765-771, 1996.
  • 224. J.R. Parker, ’’Algorithms for Image Processing and Computer Vision”, Wiley, New York, 1997.
  • 225. E. Parzen, On estimation of a probability density function and mode, Ann. of Math. Statistics, 33, 1065-1076, 1962.
  • 226. S. Peltonen, M. Gabbouj, J. Astola, Nonlinear filter design: methodologies and challenges, in Proc, of the IEEE Symp. on Image and Signal Processing and Analysis (ISPA), Pula, Croatia, 102-106, 2001.
  • 227. P. Perona, J. Malik, Scale space and edge detection using anisotropic diffusion, Proc, of IEEE Workshop on Computer Vision, 16-22, Miami, USA, 1987.
  • 228. P. Perona, J. Malik, Scale space and edge detection using anisotropic diffusion, IEEE Trans, on РАМІ, 12, 629-639, 1990.
  • 229. A.E.K. Pieńkowski, ’’Artificial Colour Perception using Fuzzy Techniques in Digital Image Processing”, Verlag TÜV, Rheinland, Köln, 1989.
  • 230. I. Pitas, A.N. Venetsanopoulos, A new filter structure for the implementation of certain classes of image processing operations, IEEE Trans, on Circuits and Systems, 35, 6, 636-647, 1988.
  • 231. I. Pitas, A.N. Venetsanopoulos, ’’Nonlinear Digital Filters, Principles and Applications”, Kluwer Academic Publishers, Boston, 1990.
  • 232. I. Pitas, P. Tsakalides, Multivariate ordering in color image processing, IEEE Trans, on Circuits and Systems for Video Technology, 1, 3, 247-256, 1991.
  • 233. I. Pitas, A.N. Venetsanopoulos, Order statistics in digital image processing, Proc, of the IEEE, 12, 80, 1893-1921, 1992.
  • 234. I. Pitas, ’’Digital Image Processing Algorithms”, Prentice Hall, 1993.
  • 235. I. Pitas, ’’Digital Image Processing Algorithms and Applications”, Wiley, 2000.
  • 236. K.N. Plataniotis, D. Androutsos, A.N. Venetsanopoulos, Colour image processing using fuzzy vector directional filters, Proc, of the IEEE Workshop on Nonlinear Signal and Image Processing (NSIP), Greece, 535-538, 1995.
  • 237. K.N. Plataniotis, D. Androutsos, V. Sri, A.N. Venetsanopoulos, A nearest-neighbour multichannel filter, Electronic Letters, 31, 1910-1911, 1995.
  • 238. K.N. Plataniotis, D. Androutsos, S. Vinayagamoorthy, A.N. Venetsanopoulos, An adaptive nearest neighbor multichannel filter, IEEE Trans, on Circuits and Systems for Video Technology, 6, 6, 699-703, 1996.
  • 239. K.N. Plataniotis, D. Androutsos, A.N. Venetsanopoulos, Adaptive multichannel filters for color image processing, Proc, of the Visual Communications Image Processing Conf., SPIE 2727, Part III, 1270-1279, 1996.
  • 240. K.N. Plataniotis, D. Androutsos, A.N. Venetsanopoulos, Fuzzy adaptive filters for multichannel image processing, Signal Processing Journal, 55, 1, 93-106, 1996.
  • 241. K.N. Plataniotis, D. Androutsos, A.N. Venetsanopoulos, Multichannel filters for image processing, Signal Processing: Image Communications, 9, 2, 143-158, 1997.
  • 242. K.N. Plataniotis, D. Androutsos, S. Vinayagamoorthy, A.N. Venetsanopoulos, Color image processing using adaptive multichannel filters, IEEE Trans, on Image Processing, 6, 7, 933-950, 1997.
  • 243. K.N. Plataniotis, A.N. Venetsanopoulos, Vector filtering, in [271], 188-209, 1998.
  • 244. K.N. Plataniotis, D. Androutsos, A.N. Venetsanopoulos, Color image processing using adaptive vector directional filters, IEEE Trans, on Circuits and Systems II, 45, 10, 1414-1419, 1998.
  • 245. K.N. Plataniotis, D. Androutsos, A.N. Venetsanopoulos, Adaptive fuzzy systems for multichannel signal processing, Proc, of the IEEE, 87, 9, 1601-1622, 1999.
  • 246. K.N. Plataniotis, A.N. Venetsanopoulos, ’’Color Image Processing and Applications”, Springer Verlag, August 2000.
  • 247. I. Pollak, A.S. Willsky, H. Krim, Image segmentation and edge enhancement with stabilized inverse diffusion equations, IEEE Trans, on Image Processing, 9, 2, 256-266, 2000.
  • 248. C.A. Poynton, ”A Technical Introduction to Digital Video”, Prentice Hall, Toronto, 1996.
  • 249. M.K. Prasad, Y.H. Lee, Stack filters and selection probabilities, IEEE Trans, on Signal Processing, 42, 2628-2643, 1994.
  • 250. W. Pratt, ’’Digital Image Processing”, New York, John Willey & Sons, 1991.
  • 251. F. Preteux, N. Merlet, New concepts in mathematical morphology: the topographical distance function, Proc, of SPIE, 1568, 66-77, 1991.
  • 252. F. Preteux, On a distance function approach for gray-level mathematical morphology, in ’’Mathematical Morphology in Image Processing”, E.R. Dougherty (Editor), Marcel Dekker, New York, 1993.
  • 253. M. Proesmans, E. Pauvels, L. van Gool, Coupled geometry-driven diffusion equations for low- level vision, in [262], 1994.
  • 254. P. Pujas, M.J. Aldon, Estimation of the colour image gradient with perceptual attributes, in Proc, of the 9th Int. Conf, on Image Analysis and Processing (ICIAP), Lecture Notes in Computer Science, 1310, 103-110, September 1997.
  • 255. G. Ramponi, The rational filter for image smoothing, IEEE Signal Processing Letters, 3, 3, 63-65, 1996.
  • 256. G. Ramponi, C. Moloney, Smoothing speckled images using an adaptive rational operator, IEEE Signal Processing Letters, 4, 3, 68-71, 1997.
  • 257. H. Rantanen, M. Karlsson, P. Pohjala, S. Kalli, Color video signal processing with median filters, IEEE Trans, on Consumer Electronics, 38, 157-161, 1992.
  • 258. C.S. Regazoni, A. Teschioni, A new approach to vector median filtering based on space filling curves, IEEE Trans, on Image Processing, 6, 990-1001, 1997.
  • 259. F. Rhodes, Digital metrics generated by families of paths, Discrete Mathematics, 135, 265-277, 1994.
  • 260. D. de Ridder, R.P.W. Duin, P.W. Verbeek, L.J. van Vliet, The applicability of neural networks to non-linear image processing, Pattern Analysis and Applications, 2, 111-128, 1999.
  • 261. S. Rital, H. Cherifi, Similarity hypergraph representation for impulsive noise reduction, Proc, of the 4th EURASIP Conf, focused on Video/Image Processing and Multimedia Communications (EC-VIP-MC), Zagreb, Croatia, July 2-4, 539-544, 2003.
  • 262. B. Romeny ter Haar, ’’Geometry-Driven Diffusion in Computer Vision”, Kluwer, Boston, MA, 1994.
  • 263. B. Romeny ter Haar, L. Florack, J. Koendemick, M. Viergever, Scale-space theory in computer vision, First Int. Conf, on Scale-Space, Utrecht, The Netherlands, July 2-4, 1997, Lecture Notes in Computer Science 1252, 1997.
  • 264. M. Ropert, F.M. Saint-Martin, D. Pele, A new representation of weighted order statistic filters. Signal Processing, 54, 201-206, 1996.
  • 265. M. Rosenblatt, Remarks on some nonparametric estimates of a density function, Annals of Mathematical Statistics, 27, 832-835, 1956.
  • 266. N. Rougon, F. Preteux, Differential geodesic mathematical morphology, Proc, of SPIE Conf, on Mathematical Modelling, Bayesian Estimation and Inverse Problems, Denver, CO, 18-23 July, 3816, 294-305, 1999.
  • 267. J.C. Russ, ”The Image Processing Handbook”, CRC Press, 1995.
  • 268. P. Saint-Marc, J.S. Chen, G. Medioni, Adaptive smoothing: a general tool for early vision, Proc, of the IEEE Conf, on Computer Vision and Pattern Recognition, 618-624, San Diego, 1989.
  • 269. P. Saint-Marc, J.S. Chen, G. Medioni, Adaptive smoothing: a general tool for early vision, IEEE Trans, on РАМІ, 13, 6, 514-529, 1991.
  • 270. G.I. Sanchez-Ortiz, D. Rueckert,P. Burger, Knowledge-based tensor anisotropic diffusion of cardiac magnetic resonance images, Medical Image Analysis, 3, 2, 1-25, 1999.
  • 271. S.J. Sangwine, R.E.N. Home,(Eds.), ’’The Colour Image Processing Handbook”, Chapman & Hall, Cambridge, 1998.
  • 272. G. Sapiro, D.L. Ringach, Anisotropic diffusion of multivalued images with applications to color filtering, IEEE Trans, on Image Processing, 5, 11, 1582-1586, 1996.
  • 273. G. Sapiro, Geometric partial differential equations and image analysis, in ’’Short Course on Mathematical Methods in Speech and Image analysis”. Institute of Mathematics and it’s Applications, University of Minnesota, September 14, 2000.
  • 274. G. Sapiro, ’’Geometric Partial Differential Equations and Image Analysis”, Cambridge University Press, Cambridge, MA, 2001.
  • 275. A. Scher, V. Dias, F.R. Rosenfeld, Some new image smoothing techniques, IEEE Trans, on SMC, 10, 153-158, 1980.
  • 276. O. Scherzer, J. Weickert, Relations between regularization and diffusion filtering, Journal of Math. Imaging and Vision, 12, 1, 43-63, 2000.
  • 277. P. Scheunders, J. Sijbers, Multiscale anisotropic filtering of color images, Proc, of ICIP, Thessaloniki, Greece, III, 170-173, October, 2001.
  • 278. M. Schmitt, Lecture notes on geodesy and morphological measurements, Proc, of the Summer School on Morphological Image and Signal Processing, Zakopane, Poland, 36-91, 1995.
  • 279. M. Schulze, J. A. Pearce, Some properties of the two-dimensional pseudomedian filter, Proc, of SPIE, 1451,48-57, 1991.
  • 280. D.W. Scott, ’’Multivariate Density Estimation”, Wiley, New York, 1992.
  • 281. G.A.F. Seber, ’’Multivariate Observations”, Wiley, New York, 1984.
  • 282. J. Shah, A common framework for curve evolution, segmentation and anisotropic diffusion, in Proc, of IEEE Conf, on Computer Vision and Pattern Recognition (ICPR), 136-142, June 1996.
  • 283. G. Sharma, H.J. Trussell, Digital color imaging, IEEE Trans, on Image Processing, 6, 901-932, 1997.
  • 284. G. Sharma, H.J. Trussell, Figures of merit for color scanners, IEEE Trans, on Image Processing, 6,990-1001,1997.
  • 285. F.Y. Shih, J.J. Liu, Size-invariant four-scan Euclidean distance transformation, Pattern Recognition, 31, 11, 1761-1766, 1998.
  • 286. B.W. Silverman, ’’Density Estimation for Statistics and Data Analysis”, London, Chapman and Hall, 1986.
  • 287. D. Sindoukas, N. Laskaris, S. Fotopoulos., Algorithms for color image edge enhancement using potential functions, IEEE Signal Processing Letters, 4, 9, 269-272, 1997.
  • 288. W. Skarbek, ’’Metody Reprezentacji Obrazów Cyfrowych”, Akademicka Oficyna Wydawnicza PLJ, Warszawa, 1993.
  • 289. C.G. Small, A survey of multidimendional medians, Intrenational Statistical Review, 58, 3, 263- 277, 1990.
  • 290. S.M. Smith, J.M. Brady, SUSAN - a new approach to low level image processing, Int. Journal of Computer Vision, 23, 1, 45-78, 1997.
  • 291. B. Smolka, Combined forward and backward anisotropic diffusion filtering of color images, Lecture Notes in Computer Science, LNCS 2449, 314-321, 2002.
  • 292. B. Smolka, Efficient modification of the central weighted vector median filter, Lecture Notes in Computer Science, LNCS 2449, 166-173, 2002.
  • 293. B. Smolka, On the similarity based impulsive noise removal technique for multichannel images, Lecture Notes in Computer Science, LNCS 2749, 1066-1073, 2003.
  • 294. B. Smolka, Adaptive modification of the vector median filter. Machine Graphics & Vision, 11, 2-3, 327-350, 2002.
  • 295. B. Smolka, On the new robust algorithm of noise reduction in color images, Computers & Graphics, 27,503-513, 2003.
  • 296. B. Smolka, On the nonparametric impulsive noise reduction in multichannel images, Lecture Notes in Computer Science, LNCS 2652, 979-985, 2003.
  • 297. B. Smolka, New class of filters for impulsive noise removal in color images, Lecture Notes in Computer Science, LNCS 2652, 970-978, 2003.
  • 298. B. Smolka, К. Wojciechowski, A new method of texture binarization, Lecture Notes in Computer Science, LNCS 1296, 629-636, 1997.
  • 299. B. Smolka, К. Wojciechowski, Contrast enhancement of badly illuminated images, Lecture Notes in Computer Science, LNCS 1296, 271-278, 1997.
  • 300. B. Smolka, К. Wojciechowski, Edge preserving probabilistic smoothing algorithm, Lecture Notes in Computer Science, LNCS 1689, 41-48, 1999.
  • 301. B. Smolka, К. Wojciechowski, Contrast enhancement of gray scale images based on the random walk model, Lecture Notes in Computer Science, LNCS 1689, 411-418, 1999.
  • 302. B. Smolka, К. Wojciechowski, Random walk approach to image enhancement, Signal Processing, 81,3,465-482, 2001.
  • 303. B. Smolka, M. Szczepański, К. Wojciechowski, K.N. Plataniotis, On the noise attenuation in DNA microarray images, Journal of Medical Informatics and Technologies, 2, 19-27, 2001.
  • 304. B. Smolka, A. Chydzinski, K. Wojciechowski, K. Plataniotis, A.N. Venetsanopoulos, On the reduction of impulsive noise in multichannel image processing, Optical Engineering, 40, 6, 902- 908,2001.
  • 305. В. Smolka, М.К. Szczepański, K.N. Plataniotis, A.N. Venetsanopoulos, Fast modified vector median filter, Lecture Notes in Computer Science, LNCS 2124, 570-580, 2001.
  • 306. B. Smolka, M. Szczepański, K.N. Plataniotis, A.N. Venetsanopoulos, Random walk approach to noise reduction in color images. Lecture Notes in Computer Science, LNCS 2124,527-537, 2001.
  • 307. B. Smolka, K.N. Plataniotis, On the coupled forward and backward anisotropic diffusion scheme for color image enhancement, Lecture Notes in Computer Science, LNCS 2383, 70-80, 2002.
  • 308. B. Smolka, R. Lukac, Adaptive impulse detection based approaches for the noise reduction in heart image sequences, Journal of Medical Informatics and Technologies, 7-9, 21-30, 2002.
  • 309. B. Smolka, K.N. Plataniotis, A. Chydzinski, M. Szczepański, A.N. Venetsanopulos, K. Wojciechowski, Self-adaptive algorithm of impulsive noise reduction in color images. Pattern Recognition, 35, 1771-1784, 2002.
  • 310. B. Smolka, R. Lukac, A. Chydzinski, K.N. Plataniotis, K. Wojciechowski, Fast adaptive similarity based impulsive noise reduction filter, Real Time Imaging, 9, 261-276, 2003.
  • 311. B. Smolka, К. Czubin, J.Y. Hardeberg, K.N. Plataniotis, M. Szczepański, К. Wojciechowski, Towards automatic redeye effect removal, Pattern Recognition Letters, 24, 1767-1785, 2003.
  • 312. B. Smolka, A. Chydzinski, K.N. Plataniotis, A.N. Venetsanopoulos, New filtering technique for the impulsive noise reduction in color images, Mathematical Problems in Engineering, (in press).
  • 313. B. Smolka, K.N. Plataniotis, A.N. Venetsanopoulos, Nonlinear techniques for color image processing, in ’’Nonlinear Signal and Image Processing: Theory, Methods, and Applications”, 445- 505, Editors K.E. Barner , G.R. Arce, CRC Press, Boca Raton, FL., USA, 2004.
  • 314. B. Smolka, K.W. Wojciechowski, On the random walk approach to image enhancement, Proc, of the Second EURASIP Conf. (ECMCS), Kraków, 24-26 June, 1999.
  • 315. B. Smolka, К. Wojciechowski, M. Szczepański, Random walk approach to image enhancement. Proc, of the Int. Conf, on Image Analysis and Processing (ICIAP), Venice, Italy, September 27-29, 1999.
  • 316. B. Smolka, M. Szczepański, К. Wojciechowski, A. Swiemiak, Random walk approach to the problem of impulse noise reduction, Proc, of the 5th Workshop on Colour Image Processing, Ilmenau, Germany, 7-8 October, 1999.
  • 317. B. Smolka, К. Wojciechowski, Edge preserving noise reduction algorithm, Proc, of the Second EURASIP Conf. (ECMCS), Kraków, 24-26 June, 1999.
  • 318. B. Smolka, К. Wojciechowski, M. Szczepański, Detail preserving random noise reduction algorithm, Proc, of the 6th Int. Workshop on Systems, Signals and Image Processing (IWSSIP), Bratislava, Slovakia, June 2-4, 1999.
  • 319. B. Smolka, К. Wojciechowski, Detection of microcalcifications with the use of Levy flights model, Proc, of the Fifth Int. Workshop on Digital Mammography (IWDM), Toronto, Canada, June 11-14, 2000.
  • 320. B. Smolka, К. Wojciechowski, Edge preserving image smoothing based on self-avoiding random walk. Proc, of 15th Int. Conf, on Pattern Recognition (ICPR), Barcelona, Spain, Sept. 3-8, 2000.
  • 321. B. Smolka, К. Wojciechowski, New compression techniques for the presentation of printed documents on the WEB, Proc, of Electronic Imaging and the Visual Arts Conference (EVA), Moscow, 117-120, 2000.
  • 322. B. Smolka, A. Chydzinski, K. Wojciechowski, A. Swiemiak, Self-avoiding random walk approach to image enhancement, Proc, of the 10th European Signal Processing Conference (EU- SIPCO), Tampere, Finland, September 4-8, 2000.
  • 323. В. Smolka, К. Wojciechowski, К. Plataniotis, A.N. Venetsanopoulos, A new technique of the enhancement of scanned colour documents, Proc, of the Electronic Imaging and the Visual Arts Conference (EVA), Berlin, 178-189, 2000.
  • 324. B. Smolka, M.K. Szczepański, K.W. Wojciechowski, A. Swiemiak, Random walk approach to the problem of impulse noise reduction. Proc, of the 4th IFAC Symposium on Modelling and Control in Biomedical Systems, (Elsevier), Greifswald, Germany, 337-342, March 2000.
  • 325. B. Smolka, К. Wojciechowski, G. Zajączkowski, From Gutenberg to Internet - Printed Documents on the WEB, Proc, of the Electronic Imaging and the Visual Arts Conference (EVA), Edinburgh, August 2000.
  • 326. B. Smolka, A. Swiemiak, K. Wojciechowski, A. Chydzinski, Self-avoiding random walk approach to the enhancement of gel electrophoresis images, Proc, of the 10th European Signal Processing Conf. (EUSIPCO), September 4-8, Tampere, Finland, 2000.
  • 327. B. Smolka, M. Szlęzak, К. Plataniotis, A. Venetsanopoulos, On the efficiency of the wavelet based compression techniques, Proc, of the Int. Conf, on Digital Imaging Technology (PICS), April 22-25, Montreal, Quebec, Canada, 267-270, 2001.
  • 328. B. Smolka, M. Szczepański, K.N. Plataniotis, A. N. Venetsanopoulos, Random walk approach to noise reduction in color images, Proc, of IEEE Signal Processing Society, 2001 Int. Conf, on Image Processing (ICIP), Thessaloniki, Greece, October 7-10, 2001.
  • 329. B. Smolka, A. Chydzinski, K.N. Plataniotis, A.N. Venetsanopoulos, A similarity based approach to the reduction of impulsive noise in color images, IEEE Workshop on Nonlinear Signal and Image Processing (NSIP), Baltimore, Maryland, June 4-8, 2001.
  • 330. B. Smolka, M. Szczepański, K.N. Plataniotis, A. N. Venetsanopoulos, On the fast modified vector median filter, Canadian Conf, on Electrical and Computer Engineering (CCECE), May 13-16, 2001, Toronto, Canada, 2001.
  • 331. B. Smolka, A. Chydzinski, M. Szczepański, K.N. Plataniotis, A.N. Venetsanopoulos, On a new class of filters for the impulsive noise reduction in color images, Proc, of the 2nd Int. Symposium on Image and Signal Processing and Analysis (ISPA), June 19-21, Pula, Croatia, 2001.
  • 332. B. Smolka, M. Szczepański, A. Chydzinsky, K.N. Plataniotis, A.N. Venetsanopoulos, new algorithm for impulsive noise reduction in color images, Proc, of Digital Signal Processing for Multimedia Communications and Services (ECMCS), Budapest, Hungary, 11-13 September 2001.
  • 333. B. Smolka, M. Szczepański, A. Chydzinsky, K.N. Plataniotis A.N. Venetsanopoulos, on the class of noise reduction filters, Proc, of Digital Signal Processing for Multimedia Communications and Services (ECMCS), Budapest, Hungary, 11-13 September 2001.
  • 334. B. Smolka, M. Szczepański, K.N. Plataniotis, A.N. Venetsanopoulos, Fast vector median filter modification, Proc, of the 10th Int. Conf, on System Modelling and Control (SMC), Zakopane, Poland, 21-25 May 2001.
  • 335. B. Smolka, M. Szczepański, C. Canton-Ferrer, Efficient Algorithm for Impulsive Noise Reduction, Proc, of the Int. Conf, on Programmable Devices and Systems (PDS), Gliwice, Poland, 2001.
  • 336. В. Smolka, M. Szczepański, K.N. Plataniotis, A.N. Venetsanopoulos, On the fast modification of the vector median filter, Proc, of ICPR, 931-934, Quebec City, Canada, 2002.
  • 337. B. Smolka, K.N. Plataniotis, M. Szczepański, A.N. Venetsanopoulos, New efficient algorithm for the restoration of noisy color images. Proc, of the Electronic Imaging & Visual Arts (EVA), Florence, 100-103,18-22 March, 2002.
  • 338. В. Smolka, R. Lukac, On the combined forward and backward anisotropic diffusion scheme for the multispectral image enhancement, Proc, of the Photogrammetric Computer Vision (PCV), Graz, Austria, September 9-13, 35, 3B, Commission III, 249-254, 2002.
  • 339. B. Smolka, M. Szczepański, K.N. Plataniotis, A.N. Venetsanopoulos, Forward and backward anisotropic diffusion filtering for color image enhancement, Proc, of 14th Int. Conf, on Digital Signal Processing (DSP), Santorini, Greece, July 1-3, 2002.
  • 340. B. Smolka, C. Canton-Ferrer, M. Szczepański, К. Wojciechowski, Evaluation of the efficiency of robust anisotropic diffusion schemes, Proc, of the Int. Conf, on Computer Vision and Graphics (ICCVG), Zakopane, Poland, 666-669, 25-29 September, 2002.
  • 341. B. Smolka, M. Studer, M. Stommel, К. Wojciechowski, Vector median based color gamma filter, Proc, of the Int. Conf, on Computer Vision and Graphics (ICCVG), Zakopane, Poland, 25-29 September, 2002.
  • 342. B. Smolka, M.K. Szczepański, K.N. Plataniotis, A.N. Venetsanopoulos, On the modified weighted vector median filter, Proc, of Digital Signal Processing (DSP), Santorini, Greece, 2, 939-942, 2002.
  • 343. B. Smolka, M. Stommel, M. Studer, K. Wojciechowski, New class of noise reduction filters based on kernel density estimation, Proc, of the Int. Conf, on Computer Vision and Graphics (ICCVG), Zakopane, Poland, 25-29 September 2002.
  • 344. B. Smolka, R. Lukac, K.N. Plataniotis, New algorithm for noise attenuation in color images based on the central weighted vector median filter, Proc, of the 9th Int. Workshop on Systems, Signals and Image Processing (IWSSIP), Manchester, UK, 544-548, November 7-8, 2002.
  • 345. B. Smolka, M. Szczepański, K.N. Plataniotis, C. Canton-Ferrer, On the efficiency of robust anisotropic diffusion filtering schemes. Proc, of the 9th Int. Workshop on Systems, Signals and Image Processing (IWSSIP), Manchester, U.K., Addendum 1-5, November7-8, 2002.
  • 346. B. Smolka On the fast nonparametric technique of multichannel image enhancement, 15-22, Spectral Imaging, Proc, of the Int. Workshop of the Carinthian Tech Research AG, (Ed. R. Leitner), 15-22, 3 April, Graz, 2003,
  • 347. B. Smolka Fast similarity based impulsive noise reduction technique for color images, Spectral Imaging, Proc, of the Int. Workshop of the Carinthian Tech Research AG, (Ed. R. Leitner), 23-30, 3 April, Graz, 2003,
  • 348. B. Smolka, K.N. Plataniotis, R. Lukac, and A.N. Venetsanopoulos, Noise reduction in DNA microarray images based on digital path approach. Proc, of 5th IFAC Symposium 2003 on Modelling and Control in Biomedical Systems, 17-22, (Elsevier), Melbourne, Australia, August 2003.
  • 349. B. Smolka, K.N. Plataniotis, R. Lukac, A.N. Venetsanopoulos, On the forward and backward anisotropic diffusion framework, Proc, of the 2003 IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing (NSIP), Grado, Italy, June 8-11, 2003.
  • 350. B. Smolka, R. Lukac, K.N. Plataniotis, A.N. Venetsanopoulos, Modified anisotropic diffusion framework, Proc, of Visual Communication and Image Processing Conf. (VCIP), Lugano, Switzerland, July 8-11, 2003.
  • 351. B. Smolka, R. Lukac, K.N. Plataniotis, A.N. Venetsanopoulos, Application of kernel density estimation for color image filtering. Proc, of Visual Communication and Image Processing (VCIP), Lugano, Switzerland, July 8-11, 2003.
  • 352. B. Smolka, R. Bieda, R. Lukac, K.N. Plataniotis, Application of forward and backward anisotropic diffusion framework to color image denoising, Proc, of the 9th Int. Workshop on Systems, Signals and Image Processing (IWSSIP), Prague, Czech Republic, September 10-11, 2003.
  • 353. B. Smolka, K.N. Plataniotis, R. Lukac, A.N. Venetsanopoulos, Kernel density estimation based impulsive noise reduction filter, Proc, of the 2003 Int. Conf, on Image Processing (ICIP), Barcelona, Spain, September 14-17, 2003.
  • 354. B. Smolka, K.N. Plataniotis, R. Lukac, A.N. Venetsanopoulos, Similarity based impulsive noise removal in color images, Proc, of the 2003 Int. Conf, on Image Processing (ICIP), Barcelona, Spain, September 14-17, 2003.
  • 355. B. Smolka, K.N. Plataniotis, R. Lukac, A.N. Venetsanopoulos, On the similarity based impulsive noise removal in color images. Proc, of the IEEE Int. Conf, on Multimedia and Expo (ICME), Baltimore, USA, I, 585-588, July 6-9, 2003.
  • 356. B. Smolka, K.N. Plataniotis, R. Lukac, A.N. Venetsanopoulos, Robust retrieval of fine art paintings based on kernel density estimation, Proc, of the SPIE 5146, 137-148, 2003.
  • 357. B. Smolka, R.Lukac, Color image enhancement based on nonparametric density estimation, Proc, of the 4th EURASIP Conf, focused on Video/Image Processing and Multimedia Communications (EC-VIP-MC), Zagreb, Croatia, I, 271-276, July 2-4, 2003.
  • 358. B. Smolka, R. Lukac, Fast similarity based impulsive noise reduction technique for color images, Proc, of the 4th EURASIP Conf, focused on Video/Image Processing and Multimedia Communications (EC-VIP-MC), Zagreb, Croatia, I, 251-256, July 2-4, 2003.
  • 359. B. Smolka, K.N. Plataniotis, R. Lukac, A.N. Venetsanopoulos, Nonparametric technique of noise reduction in color images, Proc, of SPIE, 5146, 254-265, 2003.
  • 360. B. Smolka, K.N. Plataniotis, R. Lukac, A.N. Venetsanopoulos, Vector median based sigma filter. Proc, of the 2003 IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing (NSIP), Grado, Italy, June 8-11, 2003.
  • 361. B. Smolka, R. Bieda, R. Lukac, K.N. Plataniotis, Adaptive modification of the vector median filter, Proc, of the 9th Int. Workshop on Systems, Signals and Image Processing (IWSSIP), Prague, Czech Republic, September 10-11, 2003.
  • 362. B. Smolka, K.N. Plataniotis, R. Lukac, A.N. Venetsanopoulos, New class of impulsive noise reduction filters based on kernel density estimation, Proc, of the 28th IEEE Int. Conf, on Acoustic, Speech & Signal Processing (ICASSP), Hong Kong, III, 721-724, April 6-10, 2003.
  • 363. B. Smolka, M. Szczepański, R. Lukac, A.N. Venetsanopoulos, Robust color image retrieval for the world wide web, Proc, of the IEEE Int. Conf, on Acoustic, Speech & Signal Processing (ICASSP), Montreal, Canada, May 2004.
  • 364. B. Smolka, A.N. Venetsanopoulos, R. Lukac, K.N. Plataniotis, Nonparametric Approach to Color Based Image Retrieval, Proceedings of the 12th European Signal Processing Conference, September 6-10, Vienna, Austria, 2004.
  • 365. B. Smolka, S. Budzan, A.N. Venetsanopoulos, R. Lukac, Nonparametric Technique of Impulsive Noise Removal Proceedings of the 12th European Signal Processing Conference, September 6-10, Vienna, Austria, 2004.
  • 366. N. Sochen, R. Kimmel, R. Malladi, A geometrical framework for low level vision, IEEE Trans, on Image Processing, 17, 3, 310-318, 1998.
  • 367. M. Sonka, V. Hlavac, R. Boyle, ’’Image Processing, Analysis and Machine Vision”, International Thomson Computer Press, London 1993.
  • 368. A. Somboonkaew, S. Chitwong, F. Cheevasuvit, K. Dejhan, S. Mitatha, Segmentation on the edge preserving smoothing image. Proc, of 20th Asian Conf, on Remote Sensing, November 22-25, 1999, Hong Kong, China.
  • 369. M. Spann, A. Nieminen, Adaptive Gaussian weighted filtering for image segmentation, Pattern Recognition Letters, 8, 251-255, 1988.
  • 370. F. Spitzer, "Principles of Random Walk”, D. van Nostrand Company, Princeton, 1975.
  • 371. V. Starovoitov, Towards a distance transform generalization, Proc, of the 9th Scandinavian Conf, on Image Analysis, (Ed. G. Borgefors), Uppsala, 499-506, 1995.
  • 372. H.M.G. Stokman, T. Gevers, Density estimation for color images, Journal of Electronic Imaging, 1, 10, 2001.
  • 373. T. Sun, M. Gabbouj, Y. Neuovo, Center weighted median filters, some properties and applications in image processing, Signal Processing, 35, 213-229, 1994.
  • 374. T. Sun, M. Gabbouj, Y. Neuvo, Adaptive L-filters with applications in signal and image processing, Signal Processing, 38, 331-344, 1994.
  • 375. K.K. Sung, A vector signal processing approach to color, M.S. Thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 1992.
  • 376. J.S. Suri, D. Wu, J. Gao, S. Singh, S. Laxminarayan, A comparison of state-of-the-art diffusion imaging techniques for smoothing medical/non-medical image data, Proc, of the 15th Int. Conf, on Pattern Recognition (ICPR), Quebec, 11-15 August, 2002.
  • 377. M. Szczepański, В. Smolka. К. Wojciechowski, K.N. Plataniotis, A. N. Venetsanopoulos, On the new filtering technique of noise attenuation in color images, Proc, of the 2nd Int. Symp. on Image and Signal Processing and Analysis (ISPA), June 19-21, 2001, Pula, Croatia.
  • 378. M. Szczepański, В. Smolka, K.N. Plataniotis, A.N. Venetsanopoulos, Enhancement of the DNA microarray chip images, Proc, of Digital Signal Processing Conf. (DSP), Santorini, Greece, 2002.
  • 379. M. Szczepański, В. Smolka. K.N. Plataniotis, A.N. Venetsanopoulos, On the geodesic paths approach to color image filtering, Signal Processing, 83, 1309-1342, 2003.
  • 380. M. Szczepański, В. Smolka, K.N. Plataniotis, A.N.Venetsanopoulos, On the distance function approach to color image enhancement, Discrete Applied Mathematics, 139, 283-305, 2004
  • 381. R. Tadeusiewicz R., M. Flasiński, "Rozpoznawanie Obrazów”, PWN, Warszawa, 1991.
  • 382. R. Tadeusiewicz, "Systemy Wizyjne Robotów Przemysłowych”, WNT, Warszawa 1992,
  • 383. R. Tadeusiewicz, P. Korohoda, "Komputerowa Analiza i Przetwarzanie Obrazów”, Wydawnictwo Fundacji Postępu Telekomunikacji, Kraków, 1997.
  • 384. K. Tang, J. Astola, Y. Neuovo, Multichannel edge enhancement in color image processing, IEEE Trans, on Circuits and Systems for Video Technology, 4, 5, 468-479, 1994.
  • 385. K. Tang, J. Astola, Y. Neuvo, Nonlinear multivariate image filtering techniques, IEEE Trans, on Image Processing, 4, 788-798, 1995.
  • 386. B. Tang, G. Sapiro, V. Caselles, Color image enhancement via chromaticity diffusion, IEEE Trans, on Image Processing, 10, 701-707, 2001.
  • 387. T. Tasdizen, R. Whitaker, P. Burchard, S. Osher, Geometric surface smoothing via anisotropic diffusion of normals, in Proc, of IEEE Visualization, Boston, MA, USA, 125-132, 2002.
  • 388. L. Tenże, S. Carrato, G. Ramponi, An alignment algorithm for old motion pictures, IEEE Signal Processing Letters, 9, 10, 2002.
  • 389. S. Theodoris, К. Koutroumbas, ’’Pattem Recognition”, Academie Press, 1998.
  • 390. P.J. Toivanen, New geodesic distance transforms for gray scale images, Pattern Recognition Letters, 17,437-450, 1996.
  • 391. P.J. Toivanen, J. Vartiainen, A. Kaama, Multidimensional median filtering of spectral images, Second European Conference on Color in Graphics, Imaging and Vision, (CGIV), Aachen, Germany, 398-402, April 5-8, 2004.
  • 392. C. Tomasi, R. Manduchi, Bilateral filtering for gray and color image, Proc, of the IF.F.F Int. Conf, on Computer Vision, Bombay, India, 1998.
  • 393. F. Tomita, S. Tsuji, Extraction of multiple regions by smoothing in selected neighbourhoods, IEEE Trans, on Systems, Man and Cybernetics, 7, 107-109, 1977.
  • 394. F. Torkamani-Azar, K.E. Tait, Image recovery using the anisotropic diffusion equation, IEEE Trans, on Image Processing, 5, 11, 1573-1578, 1996.
  • 395. P.E. Trahanias, A.N. Venetsanopoulos, Vector directional filters: a new class of multichannel image processing filters, IEEE Trans, on Image Processing, 2, 4, 528-534, 1993.
  • 396. P.E. Trahanias, I. Pitas, A.N. Venetsanopoulos, Color image processing, in ’’Advances in 2D and 3D Digital Processing, (Techniques and Applications)”, C.T. Leondes Ed., Academic Press, 1994.
  • 397. P.E. Trahanias, D.G. Karakos, A.N. Venetsanopoulos, Directional processing of color images: theory and experimental results, IEEE Trans, on Image Processing, 5, 6, 868-881, 1996.
  • 398. D. Tschumperlé, R. Deriche, Constrained and unconstrained PDE’s for vector image restoration, Proc, of the SCIA Conference, Bergen, Norway, June 11-14, 2001.
  • 399. D. Tschumperlé, R. Deriche, Diffusion PDE’s on vector-valued images: local approach and geometric viewpoint, IEEE Signal Processing Magazine, 5, 19, 15-25, 2002.
  • 400. D. Tschumperlé, R. Deriche, Diffusion PDE’s on vector-valued images: local approach and geometric viewpoint, IEEE Signa] Processing Magazine, September 2002.
  • 401. K.P. Valavanis, J. Zheng, G. Paschos, A total color difference measure for segmentation in color images, Journal of Intelligent and Robotic Systems, 16, 269-313, 1996.
  • 402. M.I. Vardavoulia, I. Andreadis, P. Tsalides, A new vector median filter for colour image processing, Pattern Recognition Letters, 22, 675-689, 2001.
  • 403. A.N. Venetsanopoulos, K.N. Plataniotis, Multichannel image processing, Proc, of the IEEE Workshop on Nonlinear Signal and Image Processing (NSIP), 2-6, 1995.
  • 404. A.N. Venetsanopoulos, K.N. Plataniotis, M.K. Szczepański, В. Smolka. On the geodesic paths approach to multichannel signal processing, Proc, of the IEEE Int. Symp. on Circuits and Systems, Scottsdale, Arizona, 26-29 May, 2002.
  • 405. C. Vertan, M. Malciu, V. Buzuloiu, V. Popescu, Median filtering techniques for vector valued signals. Proc, of the IEEE Int. Conf, on Image Processing (ICIP), Lausanne, Switzerland, I, 977- 980, 16-19 September, 1996.
  • 406. C. Vertan, N. Boujemaa, V. Buzuloiu, A fuzzy color credibility approach to color image filtering, Proc, of IEEE Int. Conf, on Image Processing (ICIP), Vancouver, Canada, II, 808-811, 10-13 September, 2001.
  • 407. T. Viero, K. Oistamö, Y. Neuvo, Three-dimensional median-related filters for color image sequence filtering, IEEE Trans, on Circiuts and Systems for Video Technology, 4, 2, 129-142, 1994.
  • 408. M.P. Wand, M.C. Jones, ’’Kemel Smoothing”, Chapman & Hall, 1995.
  • 409. D.C.C. Wang, A.H. Vagnucci, C.C. Li, Gradient inverse weighted smoothing scheme and the evaluation of its performance, Computer Graphics and Image Processing, 15, 167-181, 1981.
  • 410. D. Wang, Q. Wang, A weighted averaging method for image smoothing, Proc, of ICPR, 981-983, Paris, 1988.
  • 411. Z. Wang, D. Zhang, Progressive switching median filter for the removal of impulse noise from highly corrupted images, IEEE Trans, on Circuits and Systems II, 46, 78-80, 1999.
  • 412. A.B. Watson, J. Hu, J.F. McGovan, Digital video quality metric based on human vision, Journal of Electronic Imaging, 1, 10, 20-29, 2001.
  • 413. J. Weickert J, ’’Anisotropic Diffusion in Image processing”, G.G. Teubner, Stuttgart, 1998.
  • 414. R. Whitaker, G. Gerig, Vector-valued diffusion, in [262], 93-134, 1994.
  • 415. R. Wichman, K. Oistamo, Q. Liu, M. Grundstrom, Y. Neuovo, Weighted vector median operation for filtering multispectral data, Proc, of the Conf.: Visual Communications and Image Processing (VCIP), 376-383, 1992.
  • 416. M. Wild, Idempotent and co-idempotent stack filters and min-max operators, Theoretical Computer Science, 603-631, 2003.
  • 417. S.S. Wilks, Certain generalizations in the analysis of variance, Biometrika, 24, 471-494, 1932.
  • 418. A.P. Witkin, Scale-space filtering, Proc, of the 4th Int. Joint Conf, on Artificial Intelligence, 1019- 1022, 1983.
  • 419. G. Wyszecki, W.S. Stiles, ’’Color Science, Concepts and Methods, Quantitative Data and Formulas”, Wiley, N.Y., 2nd Edition, 1982.
  • 420. R. Yang, L. Yin, M. Gabbouj, J. Astola, Y. Neuvo, Optimal weighted median filtering under structural constraints, IEEE Trans, on Signal Processing, 43, 591-604, 1995.
  • 421. L. Yaroslavsky, E. Murray, ’’Fundamentals of Digital Optics”, Birkhäuser, Boston, 1996.
  • 422. L. Yin, J. Astola, Y. Neuvo, Adaptive stack filtering with application to image processing, IEEE Trans, on Signal Processing-II, 41, 162-184, 1993.
  • 423. L. Yin, Y. Neuvo, Fast adaptation and performance characteristics of FIR-WOS hybrid filters, IEEE Trans, on Signal Processing-II, 41, 1610-1628, 1994.
  • 424. L. Yin, R. Yang, M. Gabbouj, Y. Neuvo, Weighted median filters: a tutorial, IEEE Trans, on Circuits and Systems II, 43, 157-192, 1996.
  • 425. Y.L. You, W. Xu, A. Tannenbaum, M. Kaveh, Behavioral analysis of anisotropic diffusion in image processing, IEEE Trans, on Image Processing, 5, 11, 1539-1553, 1996.
  • 426. P. T. Yu, W. H. Liao, Weighted order statistics filters - their classification, some properties, and conversion algorithm, IEEE Trans, on Signal Processing, 42, 2678-2691, 1994.
  • 427. P. Zamperoni, ’’Methoden der Digitalen Bildsignalverarbeitung”, Vieweg, Braunschweig, 1991.
  • 428. S. Di Zenzo, A note on the gradient of multi-image, Computer Vision Graphics Image Processing, 33, 116-125, 1986.
  • 429. S. Zhang, M.A. Karim, A new impulse detector for switching median filters, IEEE Signal Processing Letters, 9, 360-363, 2002.
  • 430. J. Zheng, K.P. Valavanis, J.M. Gauch, Noise removal from color images, Journal of Intelligent and Robotic Systems, 7, 257-285, 1993.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL2-0008-0079
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.