PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On control problems for jump linear systems

Autorzy
Identyfikatory
Warianty tytułu
PL
O problemach sterowania układami liniowymi ze skokowo zmieniającymi się parametrami
Języki publikacji
EN
Abstrakty
EN
In this book we consider the problems of controllability, stability and optimal control with quadratic index for discrete-time linear systems with randomly jumping parameters. In the analyzed model the parameters are functions of a Markov chain with finite state space. First we study various concepts of controllability and deliberately illustrate the relationships between them. For all proposed types of controllability we present necessary and sufficient conditions as well as several methods of synthesis of control law that ensures reaching of required goal. A first impression, when we consider the problem of controllability for jump linear systems, may be to reduce it to a problem of controllability of linear systems with time-varying parameters. However, one important problem arise in this approach. When we consider deterministic time-varying systems and we want to find a control that drives certain initial conditions to a final state in given time then starting from the first moment we know values of all the parameters up to the final moment. Whereas for jump linear systems in each moment we know only the past values of coefficients and the future values could be predicated with given probability. This causes that for jump linear systems quite different approach must be used. The presented results significantly extend and complete the existing knowledge in the fild of controllability of jump linear systems. Stability of jump linear systems is the next subject discussed in this book is. We focus on two types of stability: moment stability and almost sure stability. For one dimensional systems we present full description of both types of stability together with relationships between them. Such complete solution is nevertheless available only for this class of systems. Next we present results on mean square stability. This special case of moment stability deserves special attention from the following two reasons. First, it is the only case of moment stability for which the necessary and sufficient conditions are known. Secondly, mean square stability is closely related to linear quadratic problem which is one of the most important optimization problems. It is also interesting that conditions for mean square stability can be expressed in terms of solutions of properly definite set of matrix linear equations. This set of equation called coupled Lyapunov equation is also investigated. Regarding almost sure stability, which is the most desirable from practical point of view, only partial results are available. We present several sufficient conditions, however only for special commuting structure of the matrix coefficients we can present necessary and sufficient conditions. Similar situation occurs for moment stability, i.e. in general, only sufficient conditions are known and some more specific results can be formulated under additional assumptions about commuting structure. We also discuss the Lyapunov exponent approach to stability problem. However, these results are purely theoretical unless methods for determining the sign of the Lyapunov exponent are developed. The last problem discussed in this book is the problem of minimizing quadratic cost functional. It is called JLQ problem. The important difference between the results from the literature and those presented here is that we consider the situation when the coefficient of the systems depend also on time. We start with the JLQ problem on finite time interval. In this case the optimal control is given in the form of linear feedback with the feedback matrices depending on time and the state of Marków chain (the mode). The optimal feedback is given by a solution of a set of quadratic recurrent matrix equations. This set of equations is called recurrent coupled Riccati equation. Next we consider the situation of an infinite time interval. In the case the solution does not always exists. The existence of solution depends on the existence of a global and bounded solution of recurrent coupled Riccati equation. Therefore, next we investigate properties of this equation. If we consider the case when the coefficients of the system and cost functional does not explicitly depend on time the recurrent coupled Riccati equation changes into a set of algebraic quadratic matrix equations called coupled algebraic Riccati equation. Properties of this equation together with numerical algorithm of solving are also presented. We end our considerations with JLQ problem for jump linear system with additive disturbance. This problem is called noise JLQ problem. It is interesting that noise JLQ problem may have more than one solution. Basing on this property we show that for certain class of time varying systems the optimal control can be realized in the time invariant feedback form.
PL
W pracy omawia się zagadnienia sterowalności, stabilności i sterowania optymalnego z kwadratowym funkcjonałem kosztów dla dyskretnych układów liniowych ze skokowo zmieniającymi się parametrami. W rozdziale 1 zebrano istniejące koncepcje sterowalności takich układów i zaproponowano pewne nowe definicje sterowalności. Rozważa się zarówno sterowalność w ustalonym czasie, jak i sterowalność w czasie losowym. Następnie przedyskutowano zależności między różnymi typami sterowalności i dla każdego z nich podano metody syntezy prawa sterowania zapewniającego osiągnięcie wymaganego celu. Wyniki tego rozdziału w pełni rozwiązują problem sterowalności dyskretnych układów liniowych ze skokowo zmieniającymi się parametrami. Rozdział 2 poświęcony jest stabilności. Rozdział ten rozpoczyna się od wprowadzenia różnych typów sterowalności i dyskusji prostszych relacji między nimi. Następnie dla układów jednowymiarowych podane są warunki konieczne i wystarczające dla każdego typu stabilności i dokładny opis relacji między nimi. Jest to jedyna klasa układów, dla której taki kompletny opis udało się uzyskać. Stabilność średniokwadratowa została szczególnie wnikliwie opisana z dwóch powodów. Po pierwsze jest ona ściśle związana z jednym z najważniejszych zagadnień sterowania optymalnego, a mianowicie z problemem liniowo kwadratowym. Po drugie jest to jedyny typ stabilności, dla którego znane są efektywne warunki konieczne i wystarczające. Z punktu widzenia praktyki najbardziej pożądana jest stabilność z prawdopodobieństwem jeden. Niestety otrzymane wyniki nie rozwiązują w pełni tego problemu. Rozdział 3 poświęcony jest problemowi sterowania optymalnego z kwadratowym wskaźnikiem jakości. W pierwszej części tego rozdziału przedstawiono znane w literaturze wyniki dotyczące przypadku sterowania na skończonym przedziale czasowym. Następnie przedstawiono nowe wyniki dotyczące nieskończonego horyzontu czasowego. Istotną nowością w porównaniu ze znanymi pracami jest rozpatrywanie sytuacji, w której zarówno współczynniki modelu, jak i wskaźnika jakości zależą od czasu. Rezulataty te zostały osiągnięte poprzez analizę układu stowarzyszonych równań różnicowych Riccatiego.
Rocznik
Tom
Strony
5--132
Opis fizyczny
Bibliogr. 102 poz.
Twórcy
autor
  • Instytut Automatyki Politechniki Śląskiej, 44-100 Gliwice, ul. Akademicka 16, tel. (032) 237-10-93, adam.czornik@polsl.pl
Bibliografia
  • [1] H. Abou-Kandil, G. Freiling, G. Jank, On the solution of discrete-time Markovian jump linear quadratic control problems, Automatica, vol. 31, pp. 765-768, 1995.
  • [2] J. C. Allwright, A lower bound for the solution of the algebraic Riccati equation of optimal control and a geometric convergence for the Kleinman algorithm, IEEE Transactions on Automatic Control, vol. 25, 826-829, 1980.
  • [3] R. Akella, P. R. Kumar, Optimal control of production rate in failure prone manufacturing systems, IEEE Transactions on Automatic Control, vol. 31, pp. 116-126, 1986.
  • [4] L. Arnold, A formula connecting sample and moment stability of linear stochastic systems, SIAM Journal on Applied Mathematic, vol. 44, no. 3, pp. 793-802, 1984.
  • [5] L. Arnold, V. Wihstutz (eds.), Lyapunov Exponents, Lecture Notes on Mathematics, no. 1186, Springer-Verlag, New York, 1986.
  • [6] L. Arnold, H. Crauel, J. P. Eckmann (eds.), Lyapunov Exponents, Lecture Notes in Mathematics, no. 1486, Springer-Verlag, New York, 1991.
  • [7] M. Athans, Command and control (C2) theory: a challange to control science, IEEE Transactions on Automatic Control, vol. 32, no. 4, pp. 286-293,1987.
  • [8] Y. Bar Shalom, T. E. Fortman, Tracking and Data Association, Academic Press, New York, 1988
  • [9] Y. Bar Shalom, Tracking methods in a multitarget environment, IEEE Transactions on Automatic Control, vol. 23, pp. 618-628, 1978.
  • [10] Y. Bar Shalom, K. Birmiwal, Variable dimension for maneuvering target tracking, IEEE Transactions on Aero. Electr. Systems, AES-18,pp. 621-628, 1982.
  • [11] A. P. Belle Isle, F. Kozin, On the almost sure sample stability of systems with randomly time-varying delays, Automatica, vol. 8, pp. 755-763, 1972.
  • [12] A. P. Belle Isle, Stability of systems with nonlinear feedback through randomly time-varying delays, IEEE Transactions on Automatic Control, vol. 20, no. 1, pp. 67-75,1975.
  • [13] W. P. Jr. Blair, D. D. Sworder, Feedback control of a class of linear discrete systems with jump parameters and quadratic cost criteria, International Journal on Control, vol. 21, no 2, pp. 833-844, 1975.
  • [14] M. Bochner, Introduction to Higher Algebra, Mac Millan, New York, 1931.
  • [15] J. E. Bertran, P. E. Sarchik, Stability of circuits with randomly timevarying parameters, Transactions of IRE, PGIT-5, Special Supplement, pp. 260-270, 1959.
  • [16] T. Bielecki, P. R. Kumar, Necessary and sufficient conditions for a zero inventory policy to be optimal in an unreliable manufacturing systems, Proccidings of 25 th IEEE Conference on Decision And Control, Athens, 1986, pp. 248-250.
  • [17] J. G. Birdwel, On reliable control systems design, Ph. D. Disertation, Electrical Systems Lab., Mass. Inst. Technology, report no. ESL-TH-821, 1978.
  • [18] J. G. Birdwel, D. A. Castanon, M. Athans, On reliable control system designs, IEEE Transaction on Systems, Man and Cybernetics, vol. 16, no. 5, pp. 703-711, 1986.
  • [19] E. K. Boukas, A. Swierniak, H. Yang, On the robustness of jump linear quadratic control, International Journal of Robust and Nonlinear Control, vol. 10, no. 7, pp. 899-910, 1997.
  • [20] E. K. Boukas, A. Swierniak, K. Simek, H. Yang, Robust stabilization and guaranteed cost control of large scale linear systems with jumps, Kybernetika, vol. 33, no. 1, pp. 121-131, 1997
  • [21] E. К. Boukas,Z. К. Liu, Production and maintenance control for manufacturing systems,IEEE Transactions on Automatic Control, vol. 46, no. 9, pp. 1455-1460, 2001.
  • [22] H. F. Chen, Estimation and Control for Stochastic Systems, Wiley, New York, 1985.
  • [23] H. J. Chizeck, A.S. Willsky, D. Castanon, Discrete-time markovian-jump linear quadratic optimal control, International Journal of Control, vol 43, no. 1, pp. 213-231, 1986.
  • [24] M. D. Costa, M. D. Fragoso, Stability results for discrete-time linear systems with Markovian jumping parameters, Journal of Mathematical Analysis and Applications, vol. 179, no. 1, pp. 154-178, 1993.
  • [25] O. L. V. Costa, M. D. Fragoso, Discrete-time LQ-optimal control problems for infinite Markov jump parameter systems, IEEE Transactions on Automatic Control, vol. 40, no. 12, pp. 2076-2088,1995.
  • [26] A. Czornik, On discrete-time linear quadratic-control, Systems and Control Letters, vol. 36, pp. 101-107, 1999.
  • [27] A. Czornik, A. Swierniak, On controllability with respect to the expectation of discrete time jump linear systems, Journal of the Franklin Institute, vol. 338, pp. 443-453, 2001.
  • [28] A. Czornik, A. Swierniak, Controllability of discrete time jump linear systems, submitted to Dynamics of Continous, Discrete and Impulsive Systems.
  • [29] A. Czornik, A. Swierniak, On controllability of discrete time jump linear systems, Procedings of 4th World CSCC, Athens, Greece, pp. 3041-3044, 2000.
  • [30] A. Czornik, A. Nawrat, On the bounds on the solutions of the algebraic Lyapunov and Riccati equations, Archives of Control Sciences, vol. 10, no 3-4, pp. 197-244, 2000.
  • [31] A. Czornik, A. Swierniak, On the discrete JLQ and JLQG problems, Nonlinear Analysis, vol.47, pp. 423-434, 2001.
  • [32] A. Czornik, A Swierniak, Lower bounds on the solution of coupled algebraic Riccati equation, Automatica, vol. 37, no 4, pp. 619-624, 2001.
  • [33] A. Czornik, A. Swierniak, On the discrete time-varying JLQG problem, International Journal of Applied Mathematics and Computer Science, vol. 12, No. 2, pp 101-105, 2002.
  • [34] A. Czornik, A. Swierniak, Controllability of continuous time jump linear systems, Proc, of 10th Mediterranean Conference on Control and Automation, CD-ROM, Portugal, Lisbon, 2002.
  • [35] A. Czornik, A. Swierniak, On the sensitivity of the coupled discretetime Lyapunov equation, IEEE Transactions on Automatic Control, vol. 46, no. 5. pp. 659-664, 2001.
  • [36] A .Czornik, A. Swierniak, On stability of jump linear systems, in” Systems and Control: Theory and Applications” , Editor: Nikos E. Mas-torakis, World Scientific and Engineering Society Press, pp. 156-168, 2001.
  • [37] A. Czornik, A. Swierniak, On the sensitivity of the coupled continous-time Lyapunov equation, IEEE Transactions on Automatic Control, vol. 47, no. 7, pp. 1138-1142, 2002.
  • [38] A. Czornik, A. Nawrat, S. Rabsztyn, On the stability of one dimensional discrete-time jump linear systems, aceptted for publication in Archives of Control Sciences 2003.
  • [39] N. H. Du, T. V. Nhung, Relations between the sample and moment Lyapunov exponents, Stochastics and Stochastic Reports, vol. 37. pp. 201-211, 1991.
  • [40] M. Ehrhardt and W. Kliemann, Controllability of linear stochastic system, Systems and Control Letters, vol. 2, pp. 145-153, 1982.
  • [41] Y. Fang, Stability analysis of linear control systems with uncertain parameters, Ph. D. dissertation, Department of Systems, Control and Industrial Engineering, Case Western Reserve University, Cleveland, Ohio, 1994.
  • [42] Y. Fang, A new general condition for almost sure stability of jump linear systems, IEEE Transactions on Automatic Control, vol. 42, no. 3, pp. 378-382, 1997.
  • [43] Y. Fang, K. A. Loparo, X. Feng, Almost sure and ^-moment stability of jump linear systems, International Journal of Control, vol 59, no. 5, pp. 1281-1307, 1994.
  • [44] Y. Fang, K. A. Loparo, On the relathionship between the sample path and moment Lyapunov exponents for jump linear systems, IEEE Transactions on Automatic Control, vol. 47, no. 9, pp. 1556-1560, 2002.
  • [45] X. Feng, K. A. Loparo, Almost sure instability of the random harmonic oscillator, SIAM Journal on Applied Mathematic, vol. 50, no. 3, pp. 744-759, 1990.
  • [46] X. Feng, K. A. Loparo, Y. Ji, H. J. Chizeck, Stochastic stability properties of jump linear systems, IEEE Transactions on Automatic Control, vol. 37, no. 1, pp. 38-53, 1992.
  • [47] X. Feng, K. A. Loparo, A nonrandom spectrum for Lyapunov exponents of linear stochastic systems, Stochastic Analysis and Applications, vol. 9, no. 1, pp. 25-40, 1991.
  • [48] X. Feng, K. A. Loparo, Stability of discrete-time jump linear systems, Journal on Mathematical Systems, Estimation and Control, vol. 5, no. 3, pp. 275-321, 1995.
  • [49] J. J. Florentin, Optimal control of continuous-time Markov stochastic systems, Journal of Electronics Control, vol. 10, pp. 473-481, 1961.
  • [50] D. Freedman, Markov Chains, Springer-Verlag, New York, 1983.
  • [51] H. Furstenberg, H. Kesten, Products of random matrices, Ann. Math. Staitist, vol. 31, pp. 457-489, 1960.
  • [52] A. Gajic, M. Qureshi, Lyapunov Matrix Equation in System Stability and Control, Mathematics in Science and Engineering, vol. 195, Academic Press, London, 1995.
  • [53] B. E. Griffith, K. Loparo, Optimal control of jump- linear gaussian systems, International Journal of Control, vol 42, no. 4, pp. 791-819, 1985.
  • [54] A. Halanay, V. Ionescu, Time-Varying Discrete Linerar Systems, Birkhauser, Basel, 1994.
  • [55] R. Z. Hasminskii, Stochastic Stability of Differential Equations, Si-jthoff&Noordhoff, Maryland, 1980.
  • [56] R. A. Horn, C. R. Johnson, Matrix Analysis, Cambridge University Press, 1985.
  • [57] M. losifescu, Skończone procesy Markowa i ich zastosowania, PWN Warszawa, 1998.
  • [58] Y. Ji, H. Chizeck, Controllability, observability and discrete-time markovian jump linear quadratic control, International Journal of Control, vol 48, no. 2, pp. 481-498, 1988.
  • [59] Y. Ji, H.J. Chizeck, Jump linear quadratic gausian control: steady state solution and testable conditions, Control-Theory and Advanced Technology, vol. 6, pp. 289-319, 1990.
  • [60] Y. Ji, H.J. Chizeck, Controllability, stability, and continuous-time Markovian jump linear quadratic control, IEEE Transactions on Automatic Control, vol. 35, pp. 777-788, 1990.
  • [61] Y. Ji, H. J. Chizeck, X. Feng, K. A. Loparo, Stability and control of discrete-time jump linear systems, Control Theory and Advanced Technology, vol. 7, pp.247-270, 1991.
  • [62] T. Kazangey, D. D. Sworder, Effective federal policies for regulating residential housing, Proc. Summer Comp. Simulation Conf., Los Angeles, pp.1120-1128, 1971.
  • [63] R. E. Kalman, On the general theory of control systems, Proc. First IFAC Congress Automatic Control, Moscow, Butterworths, London, vol.l, pp. 481-492, 1960.
  • [64] I. Kats, N. N. Krasovskii, Ob usticzewosti sistiem sa sluczajnymi paramietrami, PrikL Matiem. i Miech., vol. 24, no.5, pp. 809-823, 1960
  • [65] J. Klamka and L. Socha, Some remarks about stochastic controllability, IEEE Transactions on Automatic Control, vol. 22, pp. 880-881, 1977.
  • [66] J. Klamka, L. S. Dong, Stochastic controllability of discrete time systems with jump Markov disturbances, Archiwum Automatyki i Telemechaniki, vol. 35, pp. 67-74, 1990.
  • [67] N. Komaroff, On Bounds for the solution of the Riccati equation for discrete-time control system, Control and Dynamics Systems, vol. 76, pp. 275-311, 1996.
  • [68] F. Kozin, A survey of stability of stochastic systems, Automatica, vol. 5, pp. 95-112, 1969.
  • [69] F. Kozin, S. Sugimoto, Relations between sample and moment stability for linear stochastic differential equations, Proceedings of the Conference on Stochastic Differential Equations, D. Mason, ed., Academic Press, New York, 1977.
  • [70] N.N. Krasovski, E. A. Lidski, Analytical design of controllers in systems with random attribute, Parts I-III, Automation and Remote Control, vol. 22, pp. 1021-1027 (Part I), pp. 1141-1146 (Part II), pp. 1289-1297 (Part III), 1961.
  • [71] R. Krtolica, U. Ozguner, H. Chan, H. Gotkas, J. Winkelman, M. Li-ubakka, Stability of linear feedback systems with random communication delays, Procidings of ACC 1991, Boston MA, June 26-28, 1991.
  • [72] H. J. Kushner, Stochastic Stability and Control, Academic Press, New York, 1967.
  • [73] H. Kwakernaak, R. Sivan, Linear optimal control systems, John Wiley & Sons, New York, 1972.
  • [74] W. H. Kwon, Y. S. Moon and S. C. Ahn, Bounds in Algebraic Riccati and Lyapunov Equations: Survey and Some New Results, International Journal of Control, vol 64, no. 3, 377-389, 1996.
  • [75] P. Lancaster and L. Rodman, Algebraic Riccati equation, Oxford Univ. Press, 1995.
  • [76] G. Langholz, A New Lower Bound on the Cost of Optimal Regulator, IEEE Transactions on Automatic Control, vol. 24, 353-354, 1979.
  • [77] C. H. Lee, T.-H.S. Li, and F. C. Kung, A New Approach for the Robust Stability of Perturbed Systems with Class of Non-Commensurate Time Delays, IEEE Transactions on Circuits and Systems -I, vol. 40, 605-608, 1995.
  • [78] A. Leizarowitz, Estimates and exect expressions for Lyapunov exponents of stochastic linear differential equations, Stochastics, vol. 24, pp. 335-356, 1988.
  • [79] Z. G. Li, Y. C. Soh, C. Y. Wen, Sufficient conditions for almost sure stability of jump linear systems, IEEE Transactions on Automatic Control, vol. 45, no. 7, pp. 1325-1329, 2000.
  • [80] R. Malhame, C. Y. Chong, Electric load model synthesis by diffusion aproximation in a high order hybrid state stochastic systems, IEEE Transactions on Automatic Control, vol. 30, pp. 854-861, 1985.
  • [81] M. Mariton, Almost sure and moment stability of jump linear systems, Systems and Control Letters, vol. 11, pp. 393-397, 1988.
  • [82] M. Mariton, Jump Linear Systems in Automatic Control, Marcel Dekker, New York and Besel, 1990.
  • [83] A. W. Marshall and I. Olkin, Inequalities: Theory of Majorization and its Applications, Academic Press, New York, 1979.
  • [84] R. R. Mitchell, F. Kozin, Sample stability of second order linear differential equation with wide band noise coefficients, Siam Journal of Applied Mathematics, vol. 27, pp. 5701-605, 1974.
  • [85] R. C. Montgomery, Reliability considerations in placement of control systems components, Proc. AIAA Guidance and Control Conference, Gatlinburg, 1983.
  • [86] T. Mori, E. Noldus, M. Kuwahara, A way to stabilizable linear system with delayed state, Automatica, vol. 19, pp. 571-574, 1983.
  • [87] T. Mori and I. A. Derese, A brief summary of the bounds on the solution of the algebraic matrix equations in control theory, International Journal of Control, vol 39, no. 2, 247-256, 1984.
  • [88] T. Morozan, Stabilization of some stochastic discrete-time control systems, Stochastic Analysis and Applications, vol. 1, no. 1, pp. 89-116, 1983.
  • [89] T. Morozan, Optimal stationary control for dynamic systems with Markov perturbations, Stochastic Analysis and Applications, vol. 3, no. 1, pp. 299-325, 1983.
  • [90] V. Z. Oseledec, A multiplicative ergodic theorem: Lyapunov characteristic numbers for dynamic systems, Trans. Moscow Math. Soc., vol. 19, pp. 197-231, 1968.
  • [91] R. V. Patel and M. Toda, Quantitative Measures of Robustness for Multivariable Systems, Proceedings of the Joint Automatic Control Conference, San Francisco, TP8-A, pp. 45-49, 1980.
  • [92] H .H. Rosenbrock, Р. D. McMorran, Good, bad, or optimal?, IEEE Transactions on Automatic Control, vol.16, no.6, pp.552-554, 1971.
  • [93] D. D. Siljak, Reliable control using multiple control systems, International Journal on Control, vol. 31, no 2, pp. 303-329, 1980.
  • [94] D. D. Siljak, Dynamic reliability using multiple control systems, Proc. 2nd Lawrece Syphosium on Systems Decision Sciences, Berkley, 1978.
  • [95] A. Swierniak, K. Simek, A. Czornik, Fault tolerant control design for linear systems, 5th National Conference on Diagnostics of Industrial Processes. Tech. Univ. Press of Zielona Gora. 2001, pp.45-50. Zielona Gora, Poland.
  • [96] A. Swierniak, K. Simek, E. K. Boukas, Intelligent robust control of fault tolerant linear systems, Proceedings IFAC Symposium on Artificial Intelligence in Real-Time Control, Malaysia, Kuala Lumpur, Pergamon Press, pp. 245-248,1997.
  • [97] D. D. Sworder, Feedback control of a class of linear systems with jump parameters, IEEE Transactions on Automatic Control, vol. 14, no. 1, pp. 9-14, 1969.
  • [98] D. D. Sworder and R. O. Rogers, An LQ- solution to a control problem associated with solar thermal central receiver, IEEE Transactions on Automatic Control, vol. 28, pp. 971-978, 1983.
  • [99] J. B. R. do Vai, J. C. Geromel and O. L. V. Costa, Uncoupled Riccati iterations for the linear quadratic control problem of discrete-time Markov jump linear systems, IEEE Transactions on Automatic Control, vol. 43, no 12, pp. 1727-1773, 1998.
  • [100] A. S. Willsky, B. C. Levy, Stochastic stability research for complex power systems, Lab. Inf. Decision Systems, Mass. Inst. Technology, report no. ET-76-C-01-2295, 1979.
  • [101] W. M. Wonham, Random Differential Equations in Control Theory, in: ’’Probabilistic Methods in Applied Mathematics”, Vol. 2, A. T. Bharucha-Reid, Ed. New York: Academic Press, 1971.
  • [102] J. Zabczyk, Controllability of stochastic linear systems, Systems and Control Letters, vol. 1, pp. 25-31, 1981.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL2-0008-0065
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.