PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of computer algebra in symbolic computations and boundary-value problems of the theory of shells

Autorzy
Identyfikatory
Warianty tytułu
PL
Zastosowanie algebry komputerowej w obliczeniach symbolicznych i zagadnieniach brzegowych teorii powłok
Języki publikacji
EN
Abstrakty
EN
The contribution consists of two parts. The first part deals with the application of the computer algebra system MATHEMATICS and the package for tensor analysis MathTensor in symbolic computations in the theory of shells. The second part is devoted to finding an approximate solution of shell boundary value problems. The contribution is neither a theory of shells nor does it aspire to be a theory of approximation. The problem related to shells, being an object of interest - the description of bodies in a curved space, is the background of considerations: 1) the possibility of showing various tools of computer assistance in symbolic .computations, 2) a proposal of the application of some approach to the Least Squares Method in search for approximate solutions applying computer algebra. The consideration in the first part is preceded by a presentation of basic relations of the considered theory of shells. One approach to the theory of shells has been explored, but ways of the application of computer algebra tools presented in the contribution may be further developed in other theories. The aim of this part of the contribution is to present an effective application of computer algebra system capabilities of formulating equations and their adaptation for further numerical computations. It has been shown that computer algebra is not "a wizard box" for an automatic derivation of expressions, but an assistant device, which helps a conscious research worker to obtain desired and reliable results. Ways of the application of advanced tools of symbolic computations have been presented, which permit to receive final expressions in the desired and possibly simplest form. Moreover, it was presented that there is no need and that it is not advisable to neglect "ad hoc" any terms in expressions. Thanks to computer algebra applications it has been possible to determine the constitutive relations of shells, which satisfy the last equation of equilibrium (2.51). The reliability of results is an important aspect of this part of the contribution. Thus, special emphasis is put on the scrutiny of the obtained formulas. The computer algebra system is a program and only a program. Although it is an advanced technological product, the entire responsibility for the results is up to the user. The attention of the contribution is focused reasonably on linear problems and shells of simple shapes, as its aim is to present a rational application of the tool, the computer algebra system. However, it has been pointed out how it is possible to extend the range of consideration to nonlinear tasks. Such approaches to the tasks for computer algebra have been shown, that the computations might be completed successfully and as quickly as possible. The results of symbolic computations presented in the contribution are differential equations in terms of displacements and other relations for a cylindrical shell. The approximation of equations derived in the first part is considered in the next part of the contribution. An application of some approach to the Least Squares Method to search an approximate solution of the differential equation system is presented. In this approach to the method the functional, which is an object of minimization, is appended with terms taking into account boundary conditions. This makes it possible to simplify considerably the implementation of the method algorithm within the computer algebra environment and permits to approximate multidimensional tasks with a discontinuous boundary. Approximations of such tasks have been shown in several other contributions of the Author. Within the elements of implementation selected solutions of the application of advanced tools of the system have been presented, which permits to speed up the computational process, in particular the integration of polynomial expressions and the construction of a system matrix of algebraic equations and its decomposition. In boundary-value problems of shells, especially the considered long cylindrical shells the phenomenon of a boundary layer occurs, so that direct a approach to the problem by means of methods of numerical approximation slowly converges with an actual result. The application of the two step approach based on membrane approximation fails, due to the bending flexibility of cylindrical shells in the parallel direction. These difficulties have been overcome applying the proposed approach of the Least Squares Method. By means of computational experiment a boundary-condition phenomenon has been discovered - that is connected not only with the method, but also with the character of the differential equations - which permits to approximate described the problem with a tenth-order operator taking into account only four boundary conditions applied in the membrane approach. The obtained approximation has been called base solution and is feasible in most of the domain, excluding the boundary layer. This discovery becomes the basis of the two-step approach proposal, presented by examples of two tasks related to cylindrical shells. This approximation is as stable as that obtained by means of the method based on membrane approximation and simultaneously free from the already mentioned disadvantages of this approach. In the first step the task is approximated taking into account selected boundary conditions. Neglected boundary conditions are satisfied locally in the second step. Additional methods of global and local error evaluation are shown, They allow, among others, to find a phenomenon of false convergence. An effective parameter of error evaluation is the value of the minimized functional. The Least Squares Method is a global approach. Its results are functions and in this context it is an analytical approach. Therefore, there is no problem with differentiation and integration, the problem of interpolation and extrapolation does not occur, either. The estimation of a global and local error of approximation is straightforward. Thanks to that the approach is free from disadvantages of discrete methods and in times of computer algebra development may become a tool of scrutiny and moreover an alternative to numerical methods. The most important feature is the discovered possibility of a two-step solution of tasks with a boundary layer. Thus, it may be applied in other tasks of mechanics and mathematical physics, where similar phenomena occur. Opposite to asymptotic approaches the method requires neither the setting up of assumptions of small parameter nor to lower the order of the differential operator. Thus, it may be applied to the problems of a wider class. The contribution shows a wide spectrum of computer algebra applications starting with formulating equations of the problem, through numerical computations, to the publication of results . The computer algebra system has been employed in the production of most contribution graphics and formulas. The processing of results is a crucial technical element connected with scientific work. The Author hopes that the presented considerations might become at least an inspiration to apply modern tools of computer assistance in processes of formulating and solving complex problems of mechanics and physics.
PL
Praca składa się z dwóch części. W części pierwszej przedstawiono zastosowanie systemu algebry komputerowej MATHEMATICA oraz pakietu analizy tensorowej MathTensor do obliczeń symbolicznych w teorii powłok. Część druga dotyczy znajdowania rozwiązania przybliżonego zagadnienia brzegowego powłok. Praca nie jest teorią powłok, ani też nie aspiruje do miana teorii aproksymacji. Zagadnienia związane z powłokami, z uwagi na przedmiot zainteresowali - opis ciał w zakrzywionej przestrzeni, stanowią kanwę rozważań z uwagi na: 1) możliwość pokazania różnorodnych narzędzi wspomagania komputerowego w zakresie obliczeń symbolicznych, 2) propozycję zastosowania pewnego ujęcia Metody Najmniejszych Kwadratów do znajdowania rozwiązań przybliżonych z wykorzystaniem algebry komputerowej. Rozważania części pierwszej poprzedzono zestawieniem podstawowych zależności omawianej teorii powłok. Omówiono jedno z podejść do teorii powłok, jednak przedstawione w pracy sposoby zastosowania narzędzi algebry komputerowej mogą być wykorzystane w innych teoriach. Celem tej części pracy jest przedstawienie możliwości efektywnego wykorzystania systemu algebry komputerowej w formułowaniu równań oraz ich przygotowaniu do dalszych obliczeń numerycznych. Pokazano, że algebra komputerowa nie jest "czarodziejską skrzynką" do automatycznego uzyskiwania wyrażeń ale asystentem pomagającym świadomemu badaczowi na uzyskanie żądanych i wiarygodnych wyników. Przedstawiono tu sposoby wykorzystania szeregu zaawansowanych narzędzi obliczeń symbolicznych, które pozwalają na uzyskanie końcowych wyrażeń w żądanej i możliwie najprostszej postaci. Ponadto pokazano, że nie trzeba, ba nawet nie należy pomijać "ad hoc" jakichkolwiek wyrazów w wyrażeniach. Dzięki wykorzystaniu algebry komputerowej udało się wyznaczyć związki konstytutywne powłok spełniające ostatnie równanie równowagi (2.51). Ważnym aspektem tej części pracy jest problem wiarygodności wyników. Dlatego też, szczególną uwagę poświęca się weryfikacji otrzymanych wzorów. System algebry komputerowej jest programem i tylko programem i mimo swojego zaawansowania technicznego całą odpowiedzialność za wyniki ponosi jego użytkownik. W pracy uwaga została skupiona celowo na zagadnieniach liniowych i powłokach o prostych kształtach, gdyż jej celem jest przedstawienie racjonalnego wykorzystania narzędzia, jakim jest system algebry komputerowej. Wskazano jednakże, w jaki sposób można rozszerzyć zakres rozważań na przypadki zadań nieliniowych. Pokazano sposoby takiego formułowania zadań dla systemu algebry komputerowej, aby obliczenia zakończyły się powodzeniem i przebiegały możliwie jak najszybciej. Wynikiem obliczeń symbolicznych przedstawionych w pracy są przemieszczeniowe równania różniczkowe i inne związki dla powłoki walcowej. Aproksymacja równań otrzymanych w części pierwszej jest przedmiotem rozważań następnej części opracowania. Przedstawiono tu zastosowanie pewnego ujęcia Metody Najmniejszych Kwadratów do znajdowania rozwiązania przybliżonego układu równań różniczkowych. W tym ujęciu metody funkcjonał, będący przedmiotem minimalizowania, uzupełniono o wyrazy uwzględniające warunki brzegowe. Pozwala to na znaczne uproszczenie wdrożenia algorytmu metody w obrębie środowiska algebry komputerowej oraz umożliwia aproksymację zadań wielowymiarowych z nieciągłym brzegiem. Aproksymacje tego typu zadań pokazano w kilku innych pracach Autora. W ramach przedstawionych elementów wdrożenia metody przedstawiono wybrane rozwiązania wykorzystania zaawansowanych narzędzi systemu algebry komputerowej pozwalające na przyśpieszenie procesu obliczeniowego, w szczególności całkowania wyrażeń wielomianowych i budowy macierzy układu równań algebraicznych i jej dekompozycji. W zagadnieniu brzegowym powłok, a w szczególności rozważanych długich powłok walcowych, występuje zjawisko warstwy brzegowej, które sprawia, że podejście bezpośrednie do problemu z użyciem metod aproksymacji numerycznej wolno zbiega się do poprawnego wyniku. Zastosowanie podejścia dwuetapowego opartego na przybliżeniu błonowym okazuje się zawodne z uwagi na podatność powłok walcowych na zginanie w kierunku równoleżnikowym. Trudności te udało się pokonać z zastosowaniem proponowanego ujęcia Metody Najmniejszych Kwadratów. W wyniku eksperymentu obliczeniowego odkryto zjawisko warunku brzegowego - jak się okazuje związane nie tylko z metodą, ale i charakterem równań różniczkowych - pozwalające na aproksymację problemu opisanego operatorem różniczkowym dziesiątego rzędu z uwzględnieniem jedynie czterech warunków brzegowych - stosowanych w podejściu błonowym. Uzyskana aproksymacja nazwana rozwiązaniem bazowym jest poprawna na większości dziedziny problemu z wyjątkiem warstwy brzegowej. To odkrycie stało się podstawą zaproponowania podejścia dwuetapowego, przedstawionego na przykładach dwóch zadań dotyczących powłok walcowych. Przybliżenie to jest stabilne i szybko zbieżne tak jak to otrzymywane w metodzie opartej na przybliżeniu błonowym i jednocześnie wolne od już wspomnianych wad tego podejścia. W pierwszym etapie zadanie jest przybliżane z wybranymi warunkami brzegowymi. Pominięte warunki brzegowe są spełniane lokalnie w drugim kroku. W pracy przedstawiono interpretację fizyczną zaobserwowanego zjawiska obliczeniowego oraz dokonano próby jego wyjaśnienia od strony matematycznej. Przy okazji wskazano na potencjalnie szerokie pole zastosowań metody. Pokazano dodatkowe metody oceny błędu lokalnego i globalnego aproksymacji pozwalające między innymi wykryć zjawisko pozornej zbieżności. Efektywnym parametrem oceny błędu jest wartość minimalizowanego funkcjonału. Metoda Najmniejszych Kwadratów jest globalnym podejściem do problemu. Wynikiem rozwiązania są funkcje i w tym sensie jest metodą analityczną. Dlatego też nie ma kłopotu z różniczkowaniem lub całkowaniem, nie występuje też problem interpolacji i ekstrapolacji. Łatwo też ocenić lokalny i globalny błąd aproksymacji. Dzięki temu podejście jest wolne od wad metod dyskretnych i w dobie rozwoju systemów algebry komputerowej może stać się narzędziem weryfikacyjnym, a nawet alternatywą dla metod numerycznych. Najistotniejszą cechą jest jednak dostrzeżona możliwość rozwiązywania dwuetapowego zadań z warstwą brzegową. Może zatem znaleźć zastosowanie w innych zagadnieniach mechaniki i fizyki matematycznej, w których występują podobne zjawiska. W przeciwieństwie do podejść asymptotycznych metoda nie wymaga stawiania założeń o małym parametrze oraz obniżania rzędu operatora różniczkowego. W związku z tym może być wykorzystana do aproksymacji szerszej klasy zadań. Praca pokazuje szerokie spektrum wykorzystania systemu algebry komputerowej od formułowania równań problemu, poprzez obliczenia numeryczne, do publikacji wyników. System algebry komputerowej został wykorzystany do przygotowania większości grafiki występującej w pracy oraz wzorów. Opracowanie wyników do publikacji stanowi istotny, techniczny element związany z pracą naukową. Autor żywi nadzieję, że przedstawione w pracy rozważania staną się przynajmniej inspirujące do wykorzystania nowoczesnych narzędzi wspomagania komputerowego w procesie formułowania oraz rozwiązywania złożonych problemów mechaniki i fizyki.
Rocznik
Tom
Strony
13--198
Opis fizyczny
Bibliogr. 236 poz.
Twórcy
  • Katedra Teorii Konstrukcji Budowlanych Politechniki Śląskiej, 44-100 Gliwice, ul. Akademicka 5, tel. (032) 237-28-77
Bibliografia
  • 1. A. Y. Aköz and A. Öziitok. A functional for shells of arbitrary geometry and a mixed finite element method for parabolic and circular cylindrical shells. International Journal for Numerical Methods in Engineering, pages 1933-1980, April 2000.
  • 2. G. Alfano, F. M. de Sciarra, and L. Rosati. Automatic analysis of multicell thin-walled sections. Computers and structures, 59(4):641-655, May 1996.
  • 3. S. S. Antman and L. S. Srubshchik. Asymptotic analysis of the eversion of nonlinearly elastic shells. Journal of Elasticity, pages 129-178, 1998.
  • 4. N. M. Auciello. Free vibrations of a linearly tapered cantilever beam with constraining springs and tip mass. Journal of Sound and Vibration, 192(4):905—911, May 1996.
  • 5. J. Awrejcewicz and V. A. Krysko. З-D theory versus 2-D approximate theory of free orthotropic (isotropic) plate and shell vibrations, Part 1: Derivation of governing equations. Journal of Sound and Vibration, pages 807-828, October 1999.
  • 6. J. Awrejcewicz and V. A. Krysko. З-D theory versus 2-D approximate theory of free orthotropic (isotropic) plate and shell vibrations, Part 2: Numerical algorithms and analysis. Journal of Sound and Vibration, pages 831-870, October 1999.
  • 7. K. A. Bannister. MACSYMA-aided large deformation analysis of a cylindrical shell under pure bending. In V. Ellen Golden and M. A. Hussain, editors, Proceedings of the 1984 MACSYMA Users’ Conference: Schenectady, New York, July 23-25, 1984, pages 140-, Schenectady, NY, USA, 1984. General Electric.
  • 8. A.V. Banshchikov, L. Bourlakova, V. Irtegov, G. Ivanova, and T. Titorenko. Symbolic computations in problems of mechanics. In Keränen [73].
  • 9. Y. В ajar. A consistent theory of geometrically non-linear shells with an independent rotation vector. International Journal of Solid Structures, 23(10): 1401—1415, 1987.
  • 10. Y. В ajar and Y. Ding. Finite-rotation elements for the non-linear analysis of thin shell structures. International Journal of Solid Structures, 26(l):83-97, 1990.
  • 11. Y. Bajar and Y. Ding. Theory and finite-element formulation for shell structures undergoing finite rotations. In G. Z. Voyiadjis and D. Karamanlidis, editors, Advances in the Theory of Plates and Shells, pages 3-26, Amsterdam, 1990. Elsevier Science Publishers B. V.
  • 12. Y. Ba§ar and Y. Ding. Transverse normal strains in the nonlinear analysis of composite laminates. Advances in Non-Linear Finite Element Methods. Second Annual Conference on Computation Structures Tech., pages 237-240, September 1994.
  • 13. Y. Ba§ar and W. B. Kratzig. A consistent shell theory for finite deformations. Acta Mechanica, 76:73-87, 1989.
  • 14. Y. Bagar and W. B. Kratzig. Computational mechanics of nonlinear response of shells. In W. B. Krätzig and E. Onate, editors, Introduction in Finite-Rotation Shell Theories and Their Operator Formulation, pages 1-28. Springer Verlag, March 1990.
  • 15. N. H. E Beebe. A bibliography of publications about the MATHEMATICA symbolic algebra language. Technical Report 1.92, Center of Scientific Computing, University of Utah, http://www.math.utah.edu/pub/tex/bib/mathematica.html, November 2002.
  • 16. N. Bellomo, L. Preziosi, and A. Romano. Mechanics and Dynamical Systems with MATHEMATICA. Modeling and simulation in science, engineering, and technology Modeling and simulation in science, engineering and technology. Birkhäuser Boston Inc., Cambridge, MA, USA, 1999.
  • 17. A. I. Beltzer. Engineering analysis via symbolic computation - a break-through. Applied Mechanics Review, 43(6): 119-126, 1990.
  • 18. A. I. Beltzer. Engineering analysis with Maple/MATHEMATICA. Academic Press, New York, NY, USA, 1995.
  • 19. M. Bemadou. Finite Element Methods for Thin Shell Problems. Wiley-Masson, Chichester-New York-Paris, first edition, 1996.
  • 20. K. Bhaskar and T. K. Varadan. A higher-order theory for bending analysis of laminated shells of revolution. Computers and Structures, pages 815-818,1991.
  • 21. S. Bielak. Theory of Shells/Teoria powłok. Studies and Monographs, Nr 30. Opole Univesity of Technology Press, Opole, 1990.
  • 22. S. Bielak and R. A. Walentyński. Consequences of the assumptions of the boundary conditions of the classical theory of plates on example of the solution with finite differences method/Konsekwencje założeń klasycznej teorii płyt na przykładzie rozwiązania metodą różnic skończonych. Journal of Opole University of Technology, Civil Engineering, 33(173/1992):39-55, 1992. ISSN 0860-0244.
  • 23. S. Bielak and R. A. Walentyński. Catenoidal shell, geometrical description, general solution of the deputy membrane state and the example of axially-symmetrical self-load/Powłoka katenoidalna, opis geometryczny, rozwiązanie ogólne i przykład osiowo-symetrycznego obciążenia ciężarem własnym. Journal of Opole University of Technology, Civil Engineering, 36(188/1993):39—52,1993. ISSN 0860-0244.
  • 24. S. Bielak and R. A. Walentyński. Instability of the numerical solution of shell of revolu-tion/Niestabilność rozwiązania powłoki obrotowej metodą numeryczną. Journal of Opole University of Technology, Civil Engineering, 37(198/1994):57-84, 1994. ISSN 08600244.
  • 25. S. Bielak and R. A. Walentyński. Semi-geodesic parameterization of the shell of revo-lution/Parametryzacja półgeodezyjna powłoki obrotowej. Journal of Opole University of Technology, Civil Engineering, 37(198/1994):43-56, 1994. ISSN 0860-0244.
  • 26. J. Bocko. EQSHELL - a REDUCE-based program for generation of equations of equilibrium for shell. Comp. Phys. Commun., 69(l):215-222, February 1992.
  • 27. A. Bornstein, T. Weller, and J. Singer. Vibration and Buckling Tests of Stringer-Stiffened Cylindrical Shells Subjected to Non-uniform Axial Loading. TAE 667. Technion-Israel Institute of Technology, Faculty of Aerospace Engineering, Haifa, October 1991.
  • 28. B. Brank and E. Carrera. Multilayered shell finite element with interlaminar continuous shear stresses: A refinement of the Reissner-Mindlin formulation. International Journal for Numerical Methods in Engineering, pages 843-873, June 2000.
  • 29. B. Budiansky and J. L. Sanders Jr. On the ’’best” first order linear shell theory. Progress in Applied Mechanics, The Prager Anniversary Volume:129-140, 1963.
  • 30. N. Buechter and E. Ramm. Shell theory versus degeneration - a comparison in large rotation finite element analysis. International Journal of Numerical Methods in Engineering, pages 39-58, March 1992.
  • 31. N. Buechter, E. Ramm, and D. Roehl. Three-dimensional extension of non-linear shell formulation based on the enhanced assumed strain concept. International Journal for Numerical Methods in Engineering, pages 2551-2568, August 1994.
  • 32. R. L. Burden and J. D. Faires. Numerical Analysis. PWS Publishing Company, Boston, fifth edition, 1993.
  • 33. W. Businger, P. A. Chevalier, N. Droux, and W. Hett. Computing minimal surfaces on a transputer network. Mathematica Journal, 4(2):70—75, Spring 1994.
  • 34. R. Cabrera. Tensorial: A tensor calculus package. Wolfram Research, Inc., MathSource electronic library http://www.mathsource.com/Content/Applications/Physics/0211-419.
  • 35. P. Castellvi, X. Jaen, and E. Llanta. TTC: symbolic tensor and exterior calculus. Computers in Physics, 8(3):360-367, 1994.
  • 36. K. Chandrashekhara and A. Bhimaraddi. Shell-core method for the analysis of a long circular cylindrical sandwich shell subjected to axisymetric loading. Journal of Structural Mechanics, pages 329-350, 1982-1983.
  • 37. W. Chih-Ping and L. Jyh-Yeuan. Three-dimensional elasticity solutions of laminated annular spherical shells. Journal of Engineering Mechanics, pages 882-885, August 2000.
  • 38. J. Chróścielewski. The Family ofC° Finite Elements in the Nonlinear Six-Parameter Shell Theory/Rodzina Elementów Skończonych Klasy C° w Nieliniowej Sześcioparametrycznej Teorii Powłok. Civil Engineering, Nr 53/540. Gdańsk University of Technology Press, Gdańsk, 1996.
  • 39. S. Christensen and L. Parker. MathTensor™-. A system for performing tensor analysis by computer. Mathematica Journal, 1(1):51-61, Summer 1990.
  • 40. J. W. Cohen. The inadequacy of the classical stress-strain relations for right helicoidal shell. In Proceedings of the Symposium on Theory of Thin Elastic Shells, pages 415-433, Delft, August 1959. North-Holland, Amsterdam, 1960.
  • 41. G. Dasgupta. Finite elements beyond Courant’s triangulation. In Keränen et al. [74], pages 107-114.
  • 42. R. Delpak and V. Peshkam. A variational approach to geometrically non-linear analysis of asymetrically-loaded rotational shells - I. Theory and formulation. Computers and Structures, pages 317-325, 1991.
  • 43. S. B. Dong and P. Etitum. Three-dimensional stability analysis of laminated anisotropic circular cylinders. International Journal of Solids and Structures, pages 1211-1229, 1995.
  • 44. G. Drwal, R. Grzymkowski, A. Kapusta, and D. Słota. MATHEMATICA' 3.0/2.2. Wydawnictwo Pracowni Komputerowej Jacka Skalmierskiego, Gliwice, 1998.
  • 45. G. Drwal, R. Grzymkowski, A. Kapusta, and D. Słota. MATHEMATICA' 4. Wydawnictwo Pracowni Komputerowej Jacka Skalmierskiego, Gliwice, 2000.
  • 46. A. Eckstein and Y. Baęar. Ductile damage analysis of elasto-plastic shells at large inelastic strains. International Journal for Numerical Methods in Engineering, pages 1663-1686, April 2000.
  • 47. R. England and J. G. Simmonds. Simplifications under the Kirchhoff hypothesis of Taber’s nonlinear theory for the axisymetric bending and torsion of elastic shells of revolution. International Journal of Solids and Structures, pages 507-514,1991.
  • 48. R. J. Gaylord, S. N. Karnin, and P. R. Wellin. Introduction to Programming with MATHEMATICA. Springer-Verlag, Berlin, Heidelberg, London, 1993.
  • 49. R. J. Gaylord, S. N. Karnin, and P. R. Wellin. An Introduction to Programming with MATHEMATICA'. TELOS, Santa Clara, second edition, 1996.
  • 50. R. P. Gilbert and K. Hackl, editors. Asymptotic Theories for Plates and Shells, Harlow, Essex, England-New York, 1995. Longman Scientific and Technical-Wiley.
  • 51. J Głazunow. Varaitional Methods for Solving Differential Equations/Metody Wariacyjne Rozwiązywania Równań Różniczkowych. Gdańsk University Press, Gdańsk, 2000.
  • 52. A. Gray. Modern Differential Geometry of Curves and Surfaces. CRC Press, 2000 N.W. Corporate Blvd., Boca Raton, FL 33431-9868, USA, 1993.
  • 53. A. Gray. Modern Differential Geometry of Curves and Surfaces with MATHEMATICA’. CRC Press, 2000 N.W. Corporate Blvd., Boca Raton, FL 33431-9868, USA, second edition, 1998.
  • 54. J. W. Gray. Mastering MATHEMATICA: Programming Methods and Applications. Academic Press, New York, NY, USA, second edition, 1998.
  • 55. R. D. Gregory and F. Y. M. Wan. Correct asymptotic theories for the axisymetric deformation of thin and moderately thick cylindrical shells. International Journal of Solids and Structures, pages 1957-1980, 1993.
  • 56. J. E. Harding, P. J. Dowling, and N. Agelidis. Buckling of Shells in Offshore Structures. Granada, London, New York, 1982.
  • 57. H. Hassis. A ’warping-Kirchhoff’ and a ’warping-Mindlin’ theory of shell deformation. Journal of Sound and Vibration, pages 633-652, August 1999.
  • 58. T. Hata, M. Furumaki, and K. Ohenoki. Transient analysis of stress wave penetration in a plate subjected to a stress pulse (application of symbolic manipulation system to ray theory). Nippon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 60(576): 1800-1806, August 1994.
  • 59. N. N. Huang. Influence of shear correction factors in the higher order shear deformation laminated shell theory. International Journal of Solids and Structures, pages 1263-1266, May 1994.
  • 60. A. Ibrahimbegovic. On assumed shear strain in finite rotation shell analysis. Engineering Computations, pages 425^137, 1995.
  • 61. U. Icardi. Cylindrical bending of laminated cylindrical shells using a modified zig-zag theory. Structural Engineering and Mechanics: an International Journal, pages 497-515, luly 1998.
  • 62. A. Iglesias and H. Power. Boundary elemens with MATHEMATICA. In Keranen et al. [74], pages 247-254.
  • 63. N. I. loakimidis. Derivation of the singular integral equations for curvilinear cracks with computer algebra software. Engineering fracture mechanics, 43(4):671-676, November 1992.
  • 64. N. O. loakimidis. Application of MATHEMATICA to the direct semi-numerical solution of finite element problems. Computers and Structures, 45(5/6):833-839, 1992.
  • 65. N. 0. loakimidis. Applications of MATHEMATICA to the direct solution of torsion problems by the energy method. Computers and Structures, 43(4):803-807, 1992.
  • 66. N. O. loakimidis. Semi-numerical iterative series solution of linear algebraic equations with MATHEMATICA. Communications Applied Numerical Methods, 8:421^429, 1992.
  • 67. X. Jaen and E. Llanta. Tools of tensor calculus. published by Wolfram Research, Inc. in the MathSource electronic library on the WWW page: http://www.mathsource.com/Content/Applications/Mathematics/0204-848.
  • 68. H. S. Jing and K. G. Tzeng. Analysis of thick laminated anisotropic cylindrical shells using a refined shell theory. International Journal of Solids and Structures, pages 1459-1475, May 1995.
  • 69. I. A. Jones. Analysis of laminated anisotropic plates and shells using symbolic computations. International Journal of Mechanical Sciences, 41:397-417, 1999.
  • 70. M. Kaoud and J. Ari-Gur. Vibration of annular circular plate with intermediate ring support. Collection of Technical Papers - AIAA/ASME/ASCE/AHS Structures, Structural Dynamics & Materials Conference, 3:1515-1521, 1996.
  • 71. A. K. Kaw. Use of a symbolic manipulator in mechanics of composites. Computers in Education Journal, 3(1):61—65, January/March 1993.
  • 72. Z. Kączkowski. Plates - Statical Calculations/Płyty - Obliczenia Statyczne. Arkady, Warszawa, 1980.
  • 73. V. Keranen, editor. Mathematics with Power: Proceedings of the Third International MATHEMATICA' Symposium’99, Hagenberg-Linz, 1999. Research Institute for Symbolic Computations, http://south.rotol.ramk.fi/keranen/IMS99/ims99mainpage.html.
  • 74. V. Keränen, P. Mitic, and A. Hietamaki, editors. Innovation in Mathematics: Proceedings of the Second International MATHEMATICA Symposium, Rovaniemen ammattikorkeak-oulun julkaisuja, Boston, MA; Southampton, UK, 1997. Computational Mechanics Publications.
  • 75. S. P. Kiselev, E. V. Vorozhtsov, and V. M. Fomin. Foundations of Fluid Mechanics with Applications: Problem Solving Using MATHEMATICA. Modeling and Simulation in Science, Engineering and Technology. Birkhauser Boston Inc., Cambridge, MA, USA, 1999-
  • 76. K. J. Knight. Development of the stiffness matrices for a line, beam, quadratic displacement triangle, and linear displacement quadrilateral finite element using MATHEMATICA. Thesis (m.s.), Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, USA, 1995.
  • 77. W. T. Koiter. A consistent first approximation in the general theory of thin elastic shells. In W. T. Koiter, editor, Theory of thin Elastic Shells, pages 12-33, Amsterdam, 1960. Proc. IUTAM Symp., North-Holland Publishing Co.
  • 78. L. Kollar and E. Dulacska. Buckling of Shells for Engineers. A Wiley Interscience Publications. John Wiley and Sons, Chichester, 1984.
  • 79. M. H. Korayem, Y. Yao, and A. Basu. Application of symbolic manipulation to inverse dynamics and kinematics of elastic robots. International Journal of Advanced Manufacturing Technology, 9(5):343-35O, 1994.
  • 80. H. Krauss. Thin Elastic shells. An Itroduction to the Theoretical Foundation and the Analysis of Their Static and Dynamic Behaviour. John Wiley and Sons, New York-London-Sydney, 1967.
  • 81. J. Krok. A unified approach to the adaptive FEM and meshless FDM. InH. A. Mang, F. G. Rammerstorfer, and J. Eberhardsteiner, editors, Proceedings of the Fifth World Congress on Computational Mechanics (WCCM V), Vienna, Austria, July 7-12 2002. Vienna University of Technology, Austria.
  • 82. J. Krok and J. Orkisz. On adaptive meshless FDM/FEM approach in field problem. In W. Lakota, Z. Waszczyszyn, and L. Ziemiański, editors, Computer Methods in Mechanics, Proceedings of the 14th PCCMM, pages 177-178, Rzeszów, May 1999. Rzeszów University of Technology.
  • 83. J. Krok, J. Orkisz, and Cecot W. Error controlled 3D stress analysis in railroad rails under tangential contact loadings by the adaptive FEM/FDM and Fourier series. In W. Lakota, Z. Waszczyszyn, and L. Ziemiański, editors, Computer Methods in Mechanics, Proceedings of the 14th PCCMM, pages 179-180, Rzeszów, May 1999. Rzeszów University of Technology.
  • 84. P. Krysl and T. Belytschko. Analysis of thin shells by the element-free Galerkin method. International Journal of Solids and Structures, pages 3057-3079, August 1996.
  • 85. R. Kutylowski and K. Myślecki. Buckling study of cylindrical shell using MATHEMATICA computing system. Z. Angew. Math. Meeh., 75(suppl.2): S539-540, 1995.
  • 86. A. A. Lakis and A. Seimane. Vibration Analysis of Anisotropic Open Cylindrical Shells Containing Flowing Fluid. Dept, of Mechanical Engineering, Ecole polytechnique de Montreal, Campus de 1’Universite de Montreal, August 1995.
  • 87. A. A. Lakis, A. Seimane, and A. Toledano. Non-linear Dynamic Analysis of Anisotropic Cylindrical Shells. Ecole polytechnique de Montreal, Dept, of Mechanical Engineering, Campus de 1’Universite de Montreal, Montreal, Quebec, Canada, August 1995.
  • 88. K. C. Le. Vibrations of Shells and Rods. Springer, New York, 1999.
  • 89. P. Leżański, J. Orkisz, and Przybylski P. A new concept of 2D/3D adaptive mesh generator for multigrid FE and meshless FD methods. In W. Łakota, Z. Waszczyszyn, and L. Ziemiański, editors, Computer Methods in Mechanics, Proceedings of the 14th PCCMM, pages 223-224, Rzeszów, May 1999. Rzeszów University of Technology.
  • 90. J. M. Lee. Ricci: A MATHEMATICA package for doing tensor calculations in differential geometry. Wolfram Research, Inc., MathSource electronic library, on the WWW page: http://www.mathsource.com/Content/Applications/Mathematics/0204-084.
  • 91. A. Leissa and J.-H. Kang. Three-dimensional vibration analysis of thick shells of revolution. Journal of Engineering Mechanics, pages 1365-1371, December 1999.
  • 92. M. C. Leu, Z. Ji, and Y. S. Wang. Studying robot kinematics and dynamics with the aid of MATHEMATICA. The International journal of mechanical engineering education, 19(3):213-228, July 1991.
  • 93. I. Levi and N. Hoff. Non-symmetric creep buckling of circular cylindrical shells in axial compression. In Proceedings of International Symposium in Creep Effect in Structures, Gotenburg, August 1970.
  • 94. T. Lewiński and J. J. Telega. Plates, Laminates, and Shells: Asymptotic Analysis and Homogenization, volume 52 of Series on Advances in Mathematics for Applied Sciences. World Scientific, River Edge, NJ, first edition, 2000.
  • 95. A. Libai and J. G. Simonds. The Nonlinear Theory of Elastic Shells. Cambridge University Press, Cambridge, second edition, 1998.
  • 96. K. M. Liew and Z. C. Feng. Vibration characteristics of conical shell panels with three-dimensional flexibility. ASME Journal of Applied Mechanics, 67:314-320, June 2000.
  • 97. I. Lottati and I. Elishakoff. Refined dynamical theories of beams, plates and shells and their applications. In Proc. Euromech-Colloquium 219.
  • 98. S. Lukasiewicz. Local Loads in Plates and Shells/Obciążenia Skupione w Płytach, Tarczach i Powłokach. Państwowe Wydawnictwo Naukowe, Warszawa, 1976.
  • 99. S. Lukasiewicz. Local Loads in Plates and Shells. Sijthoff and Noordhoff, Alpen aan den Rijn, second edition, 1979.
  • 100. A. I. Lurie. The general theory of thin elastic shells. Prikladnaya Matematika i Mekhanika, Akademiya Nauk S.S.S.R, IV, 2, 1940.
  • 101. A. I. Lurie. On the equations of general theory of elastic shells. Prikladnaya Matematika і Mekhanika, Akademiya Nauk S.S.S.R, 12(5):558—, 1950.
  • 102. A. I. Lurie. On the Static-Geometric Analogue of Shell Theory. Problems of Continuum Mechanics. SIAM, Philadelphia, 1961.
  • 103. R. E. Maeder. The MATHEMATICS Programmer. Academic Press, New York, NY, USA, 1994.
  • 104. R. E. Maeder. The MATHEMATICS Programmer IL Academic Press, New York, NY, USA, 1996.
  • 105. R. E. Maeder. Programming in MATHEMATICS. Addison-Wesley, Reading, MA, USA, third edition, 1996.
  • 106. J. Makowski, H. Stumpf, and W. Pietraszkiewicz. Jump conditions in the non-linear theory of thin irregular shells. Journal of Elasticity, pages 1-25, 1999.
  • 107. Z. E. Mazurkiewicz. Thin Elastic Shells/Cienkie Powłoki Sprężyste. Warsaw University of Technology Press, Warszawa, 1995.
  • 108. T. J. McDevitt and J. G. Simmonds. Reduction of the Sanders-Koiter equations for fully anisotropic circular shells to two coupled equations for stress and curvature function. ASME Journal of Applied Mechanics, 66:593-597, September 1999.
  • 109. R. D. Mindlin. Influence of rotatory inertia and shear on flexural motion of isotropic elastic plates. ASME Journal of Applied Mechanics, 18:31,1951.
  • 110. R. D. Mindlin. Thickness-shear and flexural vibrations of crystal plates. Journal of Applied Physics, 22(3):316-323, March 1951.
  • 111. N. F. Morris. Shell stability: The long road from theory to practice. Engineering Structures, pages 801-805, October 1996.
  • 112. P. M. Naghdi. On the theory of thin elastic shells. Quarterly of Applied Mathematics, 14:369-380, 1957.
  • 113. P. M. Naghdi. Foundations of Elastic Shell Theory, chapter 1, pages 2-90. North-Holland Publishing CO., Amsterdam, 1963.
  • 114. P. M. Naghdi. A new derivation of the general equations of elastic shells. Int. J. Engng. Sei., 1:509-522, 1963.
  • 115. P. M. Naghdi. A theory of deformable surfaces and elastic shell theory. In D. Muster, editor, Theory of Shells to Honor Lloyd Hamilton Donnell. University of Houston, nn 1967.
  • 116. J. F. Nayfeh and N. J. Rivieccio. Analysis of the nonlinearity associated with the free vibration of an orthotropic shell. Proceedings of the International Conference on Engineering, Construction, and Operations in Space, 2:1115-1121, 1996.
  • 117. H. Noguchi, T. Kawashima, and T. Miyamura. Element free analyses of shell and spatial structures. International Journal for Numerical Methods in Engineering, pages 1215— 1239, February 2000.
  • 118. A. K. Noor. Computerized symbolic manipulation in structural mechanics - progress and potential. Computer and Structures, 10:99-118, 1979.
  • 119. A. K. Noor and C. M. Andersen. Hybrid analytical technique for the nonlinear analysis of curved beams. Computers and structures, 43(5):823-830, June 1992.
  • 120. A. K. Noor and C. M. Anderson. Application of symbolic computation to geometrically nonlinear analysis of curved beams. In Noor et al. [121], pages 115-148.
  • 121. A. K. Noor, I. Elishakoff, and G. Hulbert, editors. Symbolic Computations and their Impact on Mechanics: Presented at the Winter Annual Meeting of the American Society of Mechanical Engineers, Dallas, Texas, November 25-30, 1990, volume 205 of PVP, United Engineering Center, 345 E. 47th St., New York, NY 10017, USA, 1990. American Society of Mechanical Engineers.
  • 122. V. V. Novozhilov. The Theory of Thin Shells. P. Noordhoff Ltd., Groningen, 1959.
  • 123. V. V. Novozhilov and R. Filkelstein. Concerning inaccuracies in the theory of shells due to the Kirchhoff hypotesis. Prikladnaya Matematika i Mekhanika, Akademiya Nauk S.S.S.R, 5:331-340, 1943.
  • 124. W. Olszak and A. Sawczuk. Inealastic Behaviour in Shells. P. Noordhoff, Ltd., Groningen, 1967.
  • 125. J. Orkisz. Meshless methods - a new tool in computational analysis. In W. Lakota, Z. Waszczyszyn, and L. Ziemiański, editors, Computer Methods in Mechanics, Proceedings of the 14th PCCMM, pages 273-275, Rzeszów, May 1999. Rzeszów University of Technology.
  • 126. J. Orkisz. On recent advances in the meshless finite difference method. In W. Lakota, Z. Waszczyszyn, and L. Ziemiański, editors, Computer Methods in Mechanics, Proceedings of the 14th PCCMM, pages 277-278, Rzeszów, May 1999. Rzeszów University of Technology.
  • 127. M. Ostwald. Optimal Design of Three Layer Shell Structures/Optymalne Projektowanie Trójwarstwowych Konstrukcji Powłokowych. Rozprawy; nr. 290. Poznań University Press, Poznań, first edition, 1993.
  • 128. J. Paavola and E.-M. Salonen. Fundamental theory of curved structures from a non-tensorial point of view. Structural Engineering and Mechanics: an International Journal, pages 159-179, February 1999.
  • 129. D. K. Pai and T. H. S. Ser. Simultaneous Computation of Robot Kinematics and Differential Kinematics with Automatic Differentiation. IEEE Computer Society Press, Silver Spring, 1993. IEEE catalog number 93CH3213-6.
  • 130. P. F. Pai and A. N. Palazotto. Nonlinear displacement-based finite-element analyses of composite shells - a new total lagrangian formulation. International Journal of Solids and Structures, pages 3047-3072, 1995.
  • 131. A. N. Palazotto and S. T. Dennis. Nonlinear Analysis of Shell Structures. AIAA Education Series. American Institute of Aeronautics and Astronautics, Inc., Washington, DC, 1992.
  • 132. A. N. Papusha. MATHEMATICS in non-linear elasticity theory. In Keränen et al. [74], pages 383-390.
  • 133. A. N. Papusha. Symbolic calculations in non-linear continuum mechanics. In Keränen [73].
  • 134. A. J. Paris and G. A. Costello. Bending of cord composite cylindrical shells. ASME Journal of Applied Mechanics, 67:117-127, March 2000.
  • 135. H. Parisch. A continuum based shell theory for non-linear applications. International Journal for Numerical Methods in Engineering, pages 1855-1882, 1995.
  • 136. D.-H. Park. Indical tensor package using notebook interface. MathSource electronic 1 іbrary http://www.mathsource.com/Content/Applications/Physics/0211-127.
  • 137. L. Parker and S. M. Christensen. MathTensor™: A System for Doing Tensor Analysis by Computer. Addison-Wesley, Reading, MA, USA, 1994.
  • 138. W. Pietraszkiewicz. Finite Rotations and Lagrangean Description in the Non-linear Theory of Shells. Państwowe Wydawnictwo Naukowe, Warszawa-Poznań, 1979.
  • 139. W. Pietraszkiewicz. Lagrangean description and incremental formulation in the nonlinear theory of shells. International Journal of Nonliner Mechanics, 19:115-140, 1984.
  • 140. W. Pietraszkiewicz. Geometrically nonlinear theories of thin elastic shells. Advances in Mechanics, 12:51-130, 1989.
  • 141. M. Radwanska. Analysis of Stability and Large Deformations of Surface Bearers with FEM/Analiza Stateczności i Dużych Przemieszczeń Ustrojów Powierzchniowych za Pomocą MES. Monografia; v. 105. Kroków University of Technology Press, Kraków, 1990.
  • 142. R. A. Raouf. A qualitative analysis of the nonlinear dynamic characteristics of curved orthotropic panels. Composites engineering, 3(12):1101-1110,1993.
  • 143. R. A. Raouf and A. N. Palazotto. Non-linear free vibrations of symmetrically laminated, slightly compressible cylindrical shell panels. Composite Structures, 20(4):249-257,1992.
  • 144. E. Reissner. On the theory of bending of elastic plates. Journal of Mathematics and Physics, 23(4): 184-191, November 1944.
  • 145. E. Reissner. The efect of transverse-shear deformation on the bending of elastic plates. Journal of Applied Mechanics, 12(2):69-77, June 1945.
  • 146. E. Reissner. On bending of elastic plates. Quarterly of Applied Mathematics, 5( 1 ):55-68, April 1947.
  • 147. E. Reissner. On the variational theorem of elasticity. Journal of Mathematics and Physics, XXIX (195O):9O-95, July 1950.
  • 148. E. Reissner. Stress strain relations in the theory of thin elastic shells. Journal of the Mathematical Physics, 31:109-119, 1952.
  • 149. E. Reissner. On the form of variationally derived shell equations. Journal of Applied Mechanics, 31.233-238, 1964.
  • 150. J. G. Ren. Exact solutions for laminated cylindrical shells in cylindrical bending. Composites Science and Technology, 29:169-187, 1987.
  • 151. N. N. Rogacheva. The Theory of Piezoelectric Shells and Plates. CRC Press, Boca Raton, 1994.
  • 152. H. S. Rutten. Theory and Design of Shells on Basis of Asymptotic Analysis: A Unifying Approach to Variety of Thick and Thin Elastic Shell Theories and problems. Rut-ten+Kruisman, Consulting Engineers, Rijswijk, 1973.
  • 153. L. A. Samuelson and S. Eggwertz. Shell Stability Handbook. Elsevier Applied Science, London-New York, 1992.
  • 154. J. L. Sanders Jr. An improved first-approxination theory for thin shells. Technical report, NASA Report 24, 1959.
  • 155. M. A. Save. Atlas of Limit Loads of Metal Plates, Shells, and Disks. Elsevier, Amsterdam-New York, 1995.
  • 156. M. A. Save, C. E. Massonnet, and G. de Saxce. Plastic Limit Analysis of Plates, Shells, and Disks. Elsevier, Amsterdam-New York, second edition, 1997.
  • 157. S.A. Schimmels and A. N. Palazotto. Nonlinear geometric and material behaviour of shell structures with large strains. ASCE Journal of Engineering Mechanics, pages 320-344, February 1994.
  • 158. R. Schmidt and L. Librescu. A general theory of geometrically imperfect laminated composite shells featuring damaged bonding interfaces. Q. J. Meeh. Appl. Math., 52(4):565-583, 1999.
  • 159. E. E. Sechler. The historical development of shell research and design. In V. C. Fung and E. E. Sechler, editors, Thin-Shell Structures, Theory, Experiment and Design, Englewood Cliffs, nn 1974. Prentice-Hall, Inc.
  • 160. M. Skrinar. Use of program MATHEMATICA' in the finite element method for thin plate analysis. Strojniski Vestnik, 39(l-2):35-42, January-February 1993.
  • 161. A. Slawianowska. Geometrically nonlinear models of elastic and elastic-plastic beams. Journal of Theoretical and Applied Mechanics, 35 ( 1 ):21 -42, 1997.
  • 162. A. Slawianowska. A model of cylindrical shell with moderately large rotations. In J. Chróścielewski and W. Pietraszkiewicz, editors, Shell Structures, Theory and Applications, Proceedings of the 6th SSTA Conference, pages 275-276, Gdańsk-J urata, October 1998. Technical University of Gdansk.
  • 163. A. Slawianowska. On cylindrical elastic-plastic shells with moderately large rotations. Engineering Transactions, 46(2): 165-187, 1998.
  • 164. A. Slawianowska and J. J. Telega. Asymptotic analysis of anisotropic nonlinear elastic plates. Bulletin of the Polish Academy of Sciences, 47(2): 115-126, 1999.
  • 165. R. A. Smith and A. N. Palazotto. Comparison of eight variations of a higher-order theory for cylindrical shells. American Institute of Aeronautics and Astronautics Journal, 31(6): 1125-1132, June 1993.
  • 166. W. Soedel. Vibrations of Shells and Plates. Mechanical engineering (Marcel Dekker, Inc.); v. 86. Marcel Dekker, New York, 1993.
  • 167. H. H. Soleng. The MATHEMATICS packages CARTAN and MathTensor™ for tensor analysis. In F. W. Hehl, R. A. Puntigam, and H. Ruder, editors, Relativity and Scientific Computing. Computer Algebra, Numerics, Visualization, pages 210-230. Springer-Verlag, Berlin, Heidelberg, London, 1996.
  • 168. Y. Suetake, M. Iura, and S. N. Atluri. Shell theories with drilling degrees of freedom and geometrical and material assumptions. Computer Modeling and Simulation Engineering, pages 42-48, February 1999.
  • 169. W. Szczęśniak. Selected Problems of Beams and Shells Subjected to Inertial Moving Loads/Wybrane Zagadnienia Belek i Powłok Poddanych Inercyjnym Obciążeniom Ruchomym. Prace naukowe. Budownictwo ; z. 125. Oficyna Wydawnicza Politechniki Warszawskiej, 1994.
  • 170. K. Y. Sze and L. Q. Yao. A hybrid stress ANS solid-shell element and its generalization for smart structure modelling. Part I - solid-shell element formulation. International Journal for Numerical Methods in Engineering, pages 545-563, June 2000.
  • 171. K. Y. Sze and L. Q. Yao. A hybrid stress ANS solid-shell element and its generalization for smart structure modelling. Part П - smart structure modelling. International Journal for Numerical Methods in Engineering, pages 565-581, June 2000.
  • 172. L. A. Taber. On a theory for large elastic deformation of shells of revolution including torsion and thick-shell effects. International Journal of Solids and Structures, pages 973-991,1988.
  • 173. A. Tabiei and R. Tanov. A nonlinear higher order shear deformation shell element for dynamic explicit analysis: Part I. Formulation and finite element equations. Finite Elements in Analysis and Design, pages 17-36, August 2000.
  • 174. A. Tabiei and R. Tanov. A nonlinear higher order shear deformation shell element for dynamic explicit analysis.: Part П. Performance validation through standard tests. Finite Elements in Analysis and Design, pages 39-49, August 2000.
  • 175. Y. Tazawa. Experiments in the theory of surfaces. In Keränen [73].
  • 176. A. Tessier, T. Tsui, and E. Saether. A 1, 2-order theory for elastodynamic analysis of thick orthotropic shells. International Journal of Solids and Structures, pages 3237-3259, November 1995.
  • 177. H. S. Tzou. Piezoelectric Shells: Distributed Sensing and Control of Continua. Solid mechanics and its applications ; v. 19. Kluwer Academic, Dordrecht-Boston, 1993.
  • 178. R. Valid. The Nonlinear Theory of Shells Through Variational Principles. J. Wiley and Sons, Chichester-New York, 1995.
  • 179. J. R. Vinson. The Behavior of Shells Composed of Isotropic and Composite Materials. Solid Mechanics and its Applications ; v. 18. Kluwer Academic Publishers, СІ993, Dordrecht-Boston, 1993.
  • 180. 1.1. Vorovich. Nonlinear Theory of Shallow Shells, volume 133 of Applied Mathematical Sciences. Springer, New York, 1999.
  • 181. G. Z. Voyiadjis and G. Shi. A refined two-dimensional theory for thick cylindrical shells. International Journal of Solids and Structures, pages 261-281, 1991.
  • 182. R. A. Walentyński. Solution of shells of revolution differential equations with methods of statics/Rozwiązanie równań różniczkowych powłok metodami statyki. In E. Fidelis, editor, Proceedings of the 22nd Polish Conference of Mathematical Applications, pages 108-109, Warszawa, Zakopane, September 1993. Polish Academy of Sciences, Institute of Mathematics.
  • 183. R. A. Walentyński. On the solution of shell of revolution differential equations/O rozwiązaniu równań różniczkowych powłok. In E. Fidelis, editor, Proceedings of the 23rd Polish Conference of Mathematical Applications, pages 98-99, Warszawa, Zakopane, September 1994. Polish Academy of Sciences, Institute of Mathematics.
  • 184. R. A. Walentyński. Static of the sloped shell of revolution/Statyka powłoki obrotowej wychylonej. Contributions of Scientific Departments, Polish Academy of Sciences, Department of Civil Engineering, 18:34,1994. ISBN 83-900673-2-3.
  • 185. R. A. Walentyński. Application of MATHEMATICA' for solving analytical problems in theory of shells. In V. Keränen and P. Mitic, editors, Mathematics with Vision, Proceedings of the First International MATHEMATICA Symposium, pages 361-368, Southampton, Boston, July 1995. Computational Mechanics Publications. ISBN 1-85312-386-2, ISBN 1-56252-310-4, LCCN 95-68883.
  • 186. R. A. Walentyński. On application of the artificial intelligence to the solution of the shell of revolution differential equations/O zastosowaniu sztucznej inteligencji do rozwiązania równań różniczkowych powłoki obrotowej. Journal of Silesian University of Technology, Civil Engineering, 1292(81/1995):607-616, 1995. PL ISSN 0434-0779.
  • 187. R. A. Walentyński. On the shells of revolution solution stability. In C. Rymarz, editor, Computer Methods in Mechanics, Proceedings of the 12'A Polish Conference of Computer Methods in Mechanics, pages 333-334, Warszawa, Zegrze, May 1995. Military University of Technology, Faculty of Mechanics.
  • 188. R. A. Walentyński. On the stability of the shells solution with analytic and numerical methods/O stabilności rozwiązania powłok metodą analityczną i numeryczną. In E. Fidelis, editor, Proceedings of the 24'h Polish Conference of Mathematical Applications, page 125, Warszawa, Zakopane, September 1995. Polish Academy of Sciences, Institute of Mathematics.
  • 189. R. A. Walentyński. Statics od Sloped Shells of Revolution/Statyka Powłok Obrotowych Wychylonych. PhD thesis, Silesian University of Technology, Gliwice, March 1995.
  • 190. R. A. Walentyński. Who knows how to solve it? Does it exist the solution of the equation. ? Kto wie jak to rozwiązać? Czy istnieje rozwiązanie równania... ? In E. Fidelis, editor, Proceedings of the 24, A Polish Conference of Mathematical Applications, page 124, Warszawa, Zakopane, September 1995. Polish Academy of Sciences, Institute of Mathematics.
  • 191. R. A. Walentyński. Approximate analytical solution of the shell boundary-value problem with the least squares method/Przybliżone analityczne rozwiązanie zagadnienia brzegowego powłoki metodą najmniejszych kwadratów. In E. Fidelis, editor, Proceedings of the 25'л Polish Conference of Mathematical Applications, page 118, Warszawa, Zakopane, September 1996. Polish Academy of Sciences, Institute of Mathematics.
  • 192. R. A. Walentyński. Application of the least squares method for the initial-boundary value problems solution/Zastosowanie metody najmniejszych kwadratów do rozwiązania zagadnień brzegowo-początkowych. In Selected Scientific-Research Problems of Bridges and Civil Engineering, The Scientific Conference on Occasion ofJ(Jh Anniversary of Professor Józef Glomb, pages 281-289, Gliwice, 1997. Polish Academy of Sciences, Committee of Civil and Water Engineering, Scientific Committee of Polish Association of Civil Engineers, Faculty of Civil Engineering of Silesian University of Technology. PL ISSN 0434-0779.
  • 193. R. A. Walentyński. Computer assisted analytical solution of initial-boundary value problems. In Garstecki A. et al., editor, Computer Methods in Mechanics, Proceedings of the 13 th Polish Conference of Computer Methods in Mechanics, pages 1363-1370, Warszawa, Zegrze, May 1997. Polish Academy of Sciences, Poznań University of Technology. ISBN 83-906405-7-0.
  • 194. R. A. Walentyński. A least squares method for solving initial-boundary value problems. In V. Keränen, P. Mitic, and A. Hietamäki, editors, Mathematics with Vision, Proceedings of the Second International MATHEMATICS Symposium, pages 483-490, Southampton, Boston, Rovaniemi, June 1997. Computational Mechanics Publications, Rovaniemen ammattikorkeakoulun julkaisuja A-2. ISBN 1-85312-5029, ISBN 952-5153-02-9, LCCN 97-067793.
  • 195. R. A. Walentyński. Refined constitutive relations of shells/Uściślone związki konstytutywne powłok. In E. Fidelis, editor, Proceedings of the 26th Polish Conference of Mathematical Applications, pages 111-112, Warszawa, Zakopane, September 1997. Polish Academy of Sciences, Institute of Mathematics.
  • 196. R. A. Walentyński. Variational solution of the shield boundary value problem/Rozwiąza-nie wariacyjne problemu brzegowego tarczy. Journal of Silesian University of Technology, Civil Engineering, 1376(84/1997):167-175, 1997. PL ISSN 0434-0779.
  • 197. R. A. Walentyński. Application of MathTensor™ in tasks of theory of shells/Zastosowa-nie MathTensor™ w zadaniach teorii powłok. In M. Piekarski, editor, Scientific Research Computer Assistance, Proceedings of the 5'A Conference KOWBAN’98, pages 411-416, Wroclaw, Polanica, October 1998. Wrocław Scientific Association. ISBN 83-87320-27-7.
  • 198. R. A. Walentyński. Application of the refined constitutive relations of shells/Zastosowa-nie uściślonych związków konstytutywnych powłok. In E. Fidelis, editor, Proceedings of the 2Th Polish Conference of Mathematical Applications, page 108, Warszawa, Zakopane, September 1998. Polish Academy of Sciences, Institute of Mathematics.
  • 199. R. A. Walentyński. Initial-boundary value problem approximation with the MATHEMATICS system. In O. Iliev, editor, Numerical Methods and Applications, Abstracts Proceedings of the Conference NMA’98, pages 1+, on the WWW page: http://www.math.bas.bg/~nma98/talks.htm, Sofia, August 1998. Bulgarian Academy of Sciences.
  • 200. R. A. Walentyński. Refined constitutive relations applied to the spherical shell/Uściślone związki konstytutywne zastosowane do powłoki sferycznej. Journal of Silesian University of Technology, Civil Engineering, 1404(85/1998):103-l 14, 1998. PL ISSN 0434-0779.
  • 201. R. A. Walentyński. Refined constitutive shell equations. In J. Chróścielewski and W. Pietraszkiewicz, editors, Shell Structures, Theory and Applications, Proceedings of the Sixth Conference SSTA’98, pages 275-276, Gdansk, Jurata, September 1998. Polish Academy of Sciences, Polish Society of Theoretical and Applied Mechanics, Technical University of Gdańsk, Faculty of Civil Engineering. ISBN 83-910400-0-3.
  • 202. R. A. Walentyński. Application of MATHEMATICS and MathTensor™ in the theory of shells. In F. Winkler, editor, Proceedings of the Scientific Workshop on Symbolic and Numerical Computations, Linz, Hagenberg, August 1999. University of Linz, Research Institute of Symbolic Computations.
  • 203. R. A. Walentyński. Computer assisted refinement of shell’s constitutive equations. In W. Łakota, Z. Waszczyszyn, and L. Ziemiański, editors, Computer Methods in Mechanics, Proceedings of the 14'л Polish Conference of Computer Methods in Mechanics, PC-CMM’99, pages 381-382, Rzeszów, May 1999. Polish Academy of Sciences, Rzeszów University of Technology, Faculty of Civil and Environmental Engineering. ISBN 83-7199-095-2.
  • 204. R. A. Walentyński. Geometrical description of shell with computer algebra system. In Structural Mechanics, Proceedings of the 1FA International Scientific Conference, pages 51-54, Brno, October 1999. Technical University of Brno, Faculty of Civil Engineering. ISBN 80-214-1433-2.
  • 205. R. A. Walentyński. Refined constitutive shell equations with MathTensor™. In V. Keranen, editor, Mathematics with Power, Book of Abstracts of the Third International MATHEMATICS Symposium, pages 18, also on the WWW page: http://south.rotol.ramk.fi/keranen/IMS99/ims99papers/Mathematics_with_Power.pdf, Linz, Hagenberg, Rovaniemi, August 1999. University of Linz, Research Institute of Symbolic Computations, Rovaniemi Polytechnic. ISBN 952-5153-11-8.
  • 206. R. A. Walentyński. Refined constitutive shell equations with MathTensor™. In V. Keränen, editor, Mathematics with Power, Proceedings of the Third International MATHEMATICA' Symposium, page on the WWW page: http://south.rotol.ramk.fi/keranen/IMS99/paperl 3/no 13pdf.pdf, Linz, Hagenberg, August 1999. University of Linz, Research Institute of Symbolic Computations, Rovaniemi Polytechnic.
  • 207. R. A. Walentyński. Refined elastic energy of the shell/Uściślona energia sprężysta powłoki. In M. Piekarski, editor, Scientific Research Computer Assistance, Proceedings of the Th Conference KOWBAN'2000, pages 263-266, Wrocław, Polanica, October 2000. Wrocław Scientific Association. ISBN 83-87320-76-5.
  • 208. R. A. Walentyński. Refined constitutive shell equations with MathTensor™. The Mathematica Journal, Wolfram Media, Champaign, 8(2): 1+, also on the WWW page: http://www.mathematica-joumal.com/issue/v8i2/special/html/Links/indexJnk 35.html, 2001.
  • 209. R. A. Walentyński. Refined strain energy of the shell. In J. Zaraś, K. Kowal-Michalska, and J. Rhodes, editors, Thin Walled Structures, Advances and Developments, Proceedings of the 3rd International Conference on Thin Walled Structures, pages 701-708, Krakow, Amsterdam, May 2001. Elsevier Science. ISBN 0-08-043955-1, LCCN 2001-031385.
  • 210. R. A. Walentyński. Refined least squares method for shells boundary value problems. In Y. Tazawa, S. Sakakibara, S. Ohashi, and Y. Uemura, editors, Symbolic Computations: New Horizons, Proceedings of the Fourth International MATHEMATICA' Symposium, pages 511-518, Tokyo, June 2001. Tokyo Denki University Press. ISBN 4-501-73020-X.
  • 211. R. A. Walentyński. Refined least squares method for shells boundary value problems — extended electronic version for IMS’2001. In Y. Tazawa, S. Sakakibara, S. Ohashi, and Y. Uemura, editors, Symbolic Computations: New Horizons, CD-ROM for the Proceedings of the Fourth International MATHEMATICA' Symposium, Tokyo, June 2001. Tokyo Denki University Press.
  • 212. R. A. Walentyński. Solving symbolic and numerical problems in the theory of shells with MATHEMATICA. In E Winkler, editor, Symbolic and Numerical Scientific Computations, Abstract of an Invited Lecture in Proceedings of Abstracts of the Conference SNSC'2001, pages 42, also on the WWW page: http://www.risc.uni-linz.ac.at/conferences/snsc01/walentynski.pdf, Linz, Hagenberg, September 2001. University of Linz, Research Institute of Symbolic Computations.
  • 213. R. A. Walentyński. Solving symbolic tasks in theory of shells with the computer algebra system. In J. Kralik, editor, New Trends in Statics and Dynamics of Buildings, Proceedings of the Iа International Scientific Seminar, pages 183-188, Bratislava, December 2001. Slovak University of Technology, Faculty of Civil Engineering. ISBN 80-227-1636-7.
  • 214. R. A. Walentyński. Dealing with shells boundary conditions with the refined least squares method. In H. A. Mang, F. G. Rammerstorfer, and J. Eber-hardsteiner, editors, Fifth World Congress of Computational Mechanics, Proceedings of Abstracts of the (WCCM V), pages 1-361, also on the WWW page: http://wccm.tuwien.ac.at/publications/Abstracts/80303.pdf, Vienna, July 2002. Vienna University of Technology. ISBN 3-9501554-1-4.
  • 215. R. A. Walentyński. Dealing with shells boundary conditions with the refined least squares method. In H. A. Mang, F. G. Rammerstorfer, and J. Eber-hardsteiner, editors, Fifth World Congress of Computational Mechanics, Proceedings (Full Papers) of the (WCCM V), pages 10+, on the WWW page: http://wccm.tuwien.ac.at/publications/Papers/fp80303.pdf, Vienna, July 2002. Vienna University of Technology. ISBN 3-9501554-0-6.
  • 216. R. A. Walentyński. Meshless, two steps approach to the boundary layer problems in shells. In V. KriStofovic, editor, International Scientific Conference, Proceedings of the 7'л Conference ISC’2002, pages 314-317, KoSice, May 2002. Kośice University of Technology, Faculty of Civil Engineering. ISBN 80-7099-815-6.
  • 217. R. A. Walentyński. Simplification of complex tensor expressions. In A. Iglesias, editor, New Developments in MATHEMATICA, Proceedings the 8th International Conference on Applications of Computer Algebra ACA’2002, pages on the WWW page: http://personales.unican.es/iglesias/ACA-Session/Walentynski.htm, Volos, August 2002. University of Thesaly.
  • 218. R. A. Walentyński. Solving Reissner-Mindlin plates with refined least squares method. In J. Kralik, editor, New Trends in Statics and Dynamics of Buildings, Proceedings of the International Scientific Conference, pages 49-54, Bratislava, October 2002. Slovak Society of Mechanics, SAS, Slovak University of Technology, Faculty of Civil Engineering. ISBN 80-227-1790-8.
  • 219. R. A. Walentyński. Mathematical interpretation of boundary conditions phenomenon in the refined least squares method. In P. Mitic, P. Ramsden, and J. Came, editors, Challenging the Boundaries of Symbolic Computation, Proceedinds of the 5th International Mathematica Symposium, pages 293-300, London, July 2003. Imperial College of Science, Technology and Medicine, London Mathematical Society, Imperial College Press, World Scientific Publishing Co. Pte. Ltd. ISBN 1-86094-363-2.
  • 220. R. A. Walentyński. Refined least squares approach to the initial-value problems unstable in the Lyapunov sense. In T. Burczyński, P. Fedeliński, and E. Majchrzak, editors, CMM-2003 - Short Papers, proceedings of the 15th International Conference on Computer Methods in Mechanics CMM-2003 and Is' CEACM Conference of Computational Mechanics, pages 349-350, Gliwice, Wisła, June 2003. Polish Academy of Sciences, Polish Association of Computational Mechanics, Silesian University of Technology, Department of Strength of Materials and Computational Mechanics, Silesian University of Technology. ISBN-83-914632-5-7.
  • 221. R. A. Walentyński. Refined least squares approach to the initial-value problems unstable in the Lyapunov sense. In T. Burczyński, P. Fedeliński, and E. Majchrzak, editors, CMM-2003 - Full Papers (CDROM), proceedings of the 15th International Conference on Computer Methods in Mechanics CMM-2003 and Is' CEACM Conference of Computational Mechanics, pages 8+, Gliwice, Wisła, June 2003. Polish Academy of Sciences, Polish Association of Computational Mechanics, Silesian University of Technology, Department of Strength of Materials and Computational Mechanics, Silesian University of Technology, Datacomp. ISBN-83-914632-4-9.
  • 222. R. A. Walentyński. Simplification of complex tensor expressions. In A. G. Akritas, I. S. Kotsireas, E. Roanes-Lozano, S. Steinberg, and M. Wester, editors, Journal of Symbolic Computations: Special Issue on Applications of Computer Algebra, pages 15+, 2003. submitted to the editor.
  • 223. R. A. Walentyński. Solving symbolic and numerical problems in the theory of shells with MATHEMATICA'. In F. Winkler and U. Langer, editors, Symbolic and Numerical Scientific Computation, number 2630 in Lecture Notes in Computer Science, pages 309-348, Heildelberg, 2003. Research Institute for Symbolic Computation, Springer Verlag. ISBN 3-540-40554-2.
  • 224. R. A. Walentyński and M. Kogut. Statical and dynamical computations of thin walled element of the blast compensating wall using finite element method/Obliczenia statyczne i dynamiczne metodą elementów skończonych cienkościennego elementu obudowy kompensującej wybuch. Journal of Silesian University of Technology, Civil Engineering, 1404(85/1998): 115-124, 1998. PL ISSN 0434-0779.
  • 225. M. Walker, T. Reiss, S. Adali, and P. M. Weaver. Application of MATHEMATICA to the optimal design of composite shells for improved buckling strength. Engineering Computations, 15(2):260-267, 1998.
  • 226. Z.-W. Wang. The geometrically nonlinear theory of anisotropic sandwich shells faced with laminated composites. The Quarterly Journal of Mechanics and Applied Mathematics, 50(3):349-378, August 1997.
  • 227. T. Wickham-Jones. MATHEMATICA Graphics: Techniques and Applications. TELOS, Santa Clara, 1994.
  • 228. D. J. Wilkins, Jr. Application of a symbolic algebra manipulation language for composite structure analysis. Computer and Structures, 3:801-807, 1973.
  • 229. S. Wolfram. The MATHEMATICA Book. Cambridge University Press and Wolfram Research, Inc., New York and Champaign, fourth edition, 1999.
  • 230. Wolfram Research. MATHEMATICA 4.0 Standard Add-on Packages: the Official Guide to Over a Thousand Additional Functions for Use with MATHEMATICA 4. Wolfram Media, Champaign, 1999.
  • 231. J. H. Wolkowisky. Shooting the buckled plate. In Keranen et al. [74], pages 507-515.
  • 232. C. Woźniak. Nonlinear Theory of She I Is/Nie liniowa Teoria Powłok. Państwowe Wydawnictwo Naukowe, Warszawa, 1966.
  • 233. H. T. Y. Yang, A. Masud, and R. K. Kapania. A survey of recent shell finite elements. International Journal for Numerical Methods in Engineering, pages 101-126, January 2000.
  • 234. J.-T. Yeh and W.-H. Chen. Shell elements with drilling degree of freedoms based on micropolar elasticity theory. International Journal of Numerical Methods in Engineering, pages 1145-1158, April 1993.
  • 235. A. P. Zieliński. Boundary Series Method Applied to Plates and Shells with Curvilinear Contour/Metoda Szeregów Brzegowych w Zastosowaniu do Płyt i Powłok o Krzywoliniowym Konturze. Monografia; v. 98. Politechnika Krakowska im. Tadeusza Kościuszki, Kraków, 1990.
  • 236. D. Zwillinger. Handbook of Differential Equations. Academic Press, Inc., New York, second edition, 1989.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL2-0008-0064
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.