PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wybrane metody oceny i przycinania reguł decyzyjnych

Autorzy
Identyfikatory
Warianty tytułu
EN
Selected methods of decision rule evaluation and pruning
Języki publikacji
PL
Abstrakty
PL
Pierwsza część monografii poświęcona jest pokryciowym algorytmom indukcji reguł i obiektywnym miarom oceny jakości reguł decyzyjnych. Przedstawiono dwa algorytmy, które indukcję reguł prowadzą w kierunku maksymalizacji wartości miar przeznaczonych do oceny reguł decyzyjnych. Dokonano analizy własności miar definiowanych na podstawie tablicy kontyngencji i na tej podstawie określono minimalne zbiory własności, pożądane dla miar nadzorujących proces indukcji oraz oceniających zdolności opisowe reguł decyzyjnych. Przeprowadzono analizę równoważności i podobieństwa miar. Równoważność analizowano zarówno ze względu na uporządkowanie reguł, jak i na sposób rozstrzygania konfliktów klasyfikacji. W części eksperymentalnej zweryfikowano efektywności miar, zidentyfikowano zbiory miar najbardziej efektywnych oraz zaproponowano adaptacyjną metodę doboru miary w algorytmie indukcji reguł. Przeprowadzono także analizę własności teoretycznych najefektywniejszych miar. W pierwszej części pracy omówiono również miary niedefiniowane bezpośrednio na podstawie tablicy kontyngencji. Przedyskutowano możliwość złożonej oceny reguł, a także przedstawiono propozycję wielokryterialnej oceny reguł na podstawie tzw. funkcji użyteczności. Druga część monografii koncentruje się na wybranych metodach przycinania reguł. W części tej zaprezentowano dwa algorytmy agregacji reguł, algorytm redefinicji reguł na podstawie informacji o ważności tworzących je warunków elementarnych oraz cztery algorytmy filtracji reguł. Dzięki agregacji i redefinicji w przesłankach reguł mogą pojawić się złożone warunki elementarne, co w szczególnych przypadkach lepiej odzwierciedla zależności, jakimi charakteryzują się dane. Efektywność wszystkich algorytmów proponowanych w częściach pierwszej i drugiej zweryfikowano eksperymentalnie. Ostatnia część publikacji przedstawia przykłady nowych zastosowań algorytmów indukcji reguł decyzyjnych. Zaprezentowano trzy nowe obszary zastosowań: prognozowanie zagrożeń sejsmicznych, analizę danych okołoprzeszczepowych oraz funkcjonalny opis genów. W zastosowaniach tych wykorzystano rezultaty badań przedstawionych w częściach pierwszej i drugiej. W ostatniej części monografii przedstawiono także dwie, ukierunkowane dziedzinowo, modyfikacje algorytmów indukcji reguł. Pierwsza z nich umożliwia indukcję reguł sterowaną hipotezami definiowanymi przez użytkownika. Druga dostosowuje algorytm indukcji do hierarchicznej struktury analizowanych danych. Rezultatem badań nad funkcjonalnym opisem genów jest także metoda redukcji atrybutów, biorąca pod uwagę semantykę ich wartości.
EN
The first part of the book is devoted to seąuential covering rule induction algorithms and objective rule evaluation measures. Two algorithms that maximize values of rule evaluation measures are presented. The properties of measures defined on the basis of the contingency table were analyzed and minimal sets of the properties desired for measures controlling the process of rule induction and evaluating descriptive quality of decision rules were specified. The analysis of equivalence and similarity of measures was carried out. The equivalence was analyzed both due to the rule ordering and the classification conflicts resolving. In the experimental part the efficiency of measures was verified, sets of the most efficient measures were identified. The adaptive method of measure selection in sequential covering rule induction algorithm was proposed. Moreover, theoretical properties of most effective measures were analyzed. In the first part of the paper measures that are not defined directly from the contingency table were also discussed. Furthermore, the possibility of complex evaluation of rules was discussed and the proposal of multi-criteria rule assessment on the basis of so-called utility function was presented. The second part of the book focuses on algorithms of rule pruning. This part presents two algorithms of rule aggregation, the algorithm of rule redefinition based on information about the importance of the rule elementary conditions, and four algorithms of rule filtration. Through aggregation and redefinition complex elementary conditions may appear in rule premises which, in specific cases, better reflect dependencies in data. The effectiveness of all the algorithms proposed in the first and second parts was verified experimentally. The last part of the work shows examples of new applications of the decision rule induction algorithms. The following three new areas of application are presented: forecasting of seismic hazards, analysis of bone marrow transplantation data and functional description of genes. The results of study presented in the first two parts of the book were used there. Two domain-oriented modifications of rule induction algorithms are proposed. The first one allows for the rule induction controlled by hypothesis defined by the user. The second adjusts the induction algorithm to the hierarchical structure of the analyzed data. The method of attribute reduction that takes into consideration the semantics of the attributes values is also the result of research on the functional description of genes.
Czasopismo
Rocznik
Strony
5--331
Opis fizyczny
Bibliogr. 347 poz.
Twórcy
autor
Bibliografia
  • 1. Abe H., Tsumoto S., Oshaki M., Yamaguchi Т.: Evaluation Learning Algorithms to Constract Rule Evaluation Modeis Based on Objective Rule Evaluation Indices. IEEE - Conference on Cognitive Informatics 2007, s. 212-221.
  • 2. Abe H., Tsumoto S.: Analyzing Behavior of Objective Rule Evaluation Indices Based on Pearson Product-Moment Correlation Coefficient. Lecture Notes in Artificial Intelligence 4994, 2008, s. 84-89.
  • 3. Abe H., Tsumoto S.: Comparing accuracies of rule evaluation modeis to determine human criteria on evaluated rule sets. IEEE International Conference on Data Mining Workshops, 2008, s. 1-7.
  • 4. Abe H., Tsumoto S.: A comparison of composed objective rule evaluation indices using PCA and single indices. Lecture Notes in Computer Science 5589, 2009, s. 160-167.
  • 5. Ägotnes Т., Komorowski 1, Loken Т.: Taming large rule modeis in rough set approaches. Lecture Notes in Artificial Intelligence 1704, 1999, s. 193+203.
  • 6. Agrawal R., Srikant R.: Fast Algorithms for Mining Association Rules. Proc. of the 20lh VLDB Conference, Santiago, Chile 2004.
  • 7. Agresti A.: Categorical data analysis. Wiley Interscience, New Jersey 2002.
  • 8. An A., Cercone N.: Rule quality measures for rule induction systems - description and evaluation. Computational Intelligence 17, 2001, s. 409-424.
  • 9. Ashburner M., Bali C.A., Blake J.A., Botstein D., Butler H., Cherry J.M. et al.: Gene Ontology: Tool for the Unification of Biology. The Gene Ontology Consortium. Nature genetics 25,2005, s. 25-95.
  • 10. Bairagi R., Suchindran СМ.: An estimation of the cutoff point maximizing sum of sensitivity and specificity. Sankhya, Series B, Indian Journal of Statistics 51, 1989, s. 263-269.
  • 11. Baldi Р., Hatfield G.W.: DNA Microarrays and Gene Expression. Cambridge University Press, Cambridge 2002.
  • 12. Banzhaf J.F.: Weighted voting doesn't work: A mathematical analysis. Rutgers Law Review 19, 1965, s. 317-343.
  • 13. Barański A., Drzewiecki J., Kabiesz J., Konopko W., Kornowski J., Krzyżowski A., Mutke G.: Zasady stosowania metody kompleksowej i metod szczegółowych oceny stanu zagrożenia tąpaniami w kopalniach węgla kamiennego. Główny Instytut Górnictwa, Instrukcje, 20, 2007.
  • 14. Barber C.B., Dobkin D.P., Huh H.: The Quickhull algorithm for convex hulls. ACM Transactions on Mathematical Software, 22(4), 1996, s. 469-483.
  • 15. Bayardo R.J., Agrawal R.: Mining the most interesting rules. Proc. of the Fifth Int. Conf. on Knowledge Discovery and Data Mining, 1999, s. 145-154.
  • 16. Bazan J., Skowron A., Synak Р.: Dynamie reducts as a tool for extracting laws from decision tables. Lecture Notes in Artificial Intelligence 869, 1994, s. 346-355.
  • 17. Bazan, 1, Szczuka, M., Wróblewski, J.: A new version of rough set exploration system. Lecture Notes on Computer Science, 2475, 2002, s. 397-404.
  • 18. Bazan J., A., Skowron A., Ślęzak D., Wróblewski J.: Searching for the Сотріех Decision Reducts: The Case Study of the Survival Analysis. Lecture Notes in Artificial Intelligence 2871, 2003, s. 160-168.
  • 19. Bazan J.: Hierarchical Classifiers for Сотріех Spatio-temporal Concepts. Transactions on Rough Sets IX. LNCS 5390, 2008, s. 474-750.
  • 20. Benjamini Y., Hochberg Y.: Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of Royal Statistical Society B57(l), 1995, s. 289-300.
  • 21. Bennett K.P., Blue J.A.: A support vector machine approach to decision trees. Proc. of the IJCNN'97, 1997, s. 2396-2401.
  • 22. Bergadano F., Matwin S., Michalski R.S., Zhang 1: A general criterion for measuring quality of concept descriptions. Artificial Intelligence Center. Georg Mason Univ. Technical Report, 1988, s. 13-88.
  • 23. Berrado A., Runger G.C.: Using meta-rules to organize and group discovered association rules. Data Mining and Knowledge Discovery 14,2007, s. 409-431.
  • 24. Berry M.J.A., Linoff G.S.: Mastering Data Mining. Wiley, New York 2000.
  • 25. Bishop Y.M.M, Fienberg S.E, Holland P.W.: Discrete multivariate analysis: Theory and practice, The MIT Press, California 1991.
  • 26. Blachnik M., Duch W.: LVQ algorithm with instance weighting for generation of prototype-based rules. Neural Networks 24(8), 2011, s. 824-830.
  • 27. Blanchard J., Guillet F., Kuntz Р.: Semantic-based classification of rule interestingness measures. Post-Mining of Association Rules: Techniques for Effective Knowledge Extraction, 2009, s. 56-79.
  • 28. Bloedorn E., Michalski R.S.: Data-Driven Constructive Induction. IEEE Intelligent Systems 13(2), 1998, s. 30-37.
  • 29. Blum A.L., Langley Р.: Selection of relevant features and examples in machine learning. Artificial Intelligence 97, 1997, s. 245-271.
  • 30. Błaszczyński 1, Słowiński R., Szeląg M.: Sequential covering rule induction algorithm for variable consistency rough set approaches. Information Sciences 181(5), 2011, s. 987-1002.
  • 31. Błaszczyński J., Słowiński R., Susmaga R.: Rule-based estimation of attribute relevance. Lecture Notes in Computer Science 6954, 2011, s. 36-44.
  • 32. Błaszczyński J., Greco S., Słowiński R.: Inductive discovery of laws using monotonie rules. Engineering Applications of Artificial Intelligence 24, 2012, s. 284-294.
  • 33. Boser B.E., Guyon 1.М., Vapnik V.: A training algorithm for optimal margin classifiers. Proc. of the 5th Annual ACM Workshop on Computational Learning Theory, 1992, s. 144-152.
  • 34. Bou-Hamad I., Larocque D., Ben-Ameur H.: A review of survival trees. Statistics Surveys 5, 2011, s. 44-71.
  • 35. Box G.E., Jenkins G.M.: Time series analysis: forecasting and control. Prentice Hall, New Jersey 1994.
  • 36. Brans J.P., Mareschal В.: PROMETHEE Methods. Multiple Criteria Decision Analysis: State of the Art Surveys. Springer, New York 2005, s. 163-195.
  • 37. Brazdil P.B., Torgo L.: Knowledge acquisition via knowledge interaction. Current Trends in Knowledge Acquisition. lOS Press, Amsterdam 1990.
  • 38. Breiman L., Friedman J., Olshen R., Stone R.: Classification and Regression Trees. Wadsworth, Statistic/Probability series, California 1984.
  • 39. Breiman L.: Bagging predictors. Machine Learning 24(2), 1996, s. 123-140.
  • 40. Bruha I.: Quality of Decision Rules: Definitions and Classification Schemes for Multiple Rules. Machine Learning and Statistics, The Interface. John Wiley and Sons, Chichester 1997.
  • 41. Bruha 1.: From machine learning to knowledge discovery: Survey of preprocessing and postprocessing. Intelligent Data Analysis 4, 2000, s. 363-374.
  • 42. Bruha 1., Tkadlec J.: Rule quality for multiple-rules classifier: Empirical expertise and theoretical methodology. Intelligent Data Analysis 7, 2003, s. 99-124.
  • 43. Brzezińska I., Greco S., Słowiński R.: Mining Pareto-optimal rules with respect to support and anti-support. Engineering Applications of Artificial Intelligence, 20(5), 2007, s. 587-600.
  • 44. Carmona-Saez Р., Chagoyen M., Rodriguez A., Trelles O., Carazo J.M., Pascual-Montano A.: Integrated analysis of gene exprcssion by association rules discovery. BMC Bioinformatics 7(54), 2006.
  • 45. Carmona-Saez Р., Chagoyen M., Tirado F., Carazo J.M., Pascual-Montano A.: Genecodis: a web based tool for finding significant concurrent annotations in gene list. Genomc Biology 8,2007.
  • 46. Carnap R.: Logical Foundations of Probability. University of Chicago Press, Chicago 1962.
  • 47. Carvalho D.R., Freitas A.A., Ebecken N.: Evaluating the correlation between objective rule interestingness measures and real human interest. Lecture Notes in Computer Science 3721,2005, s. 453-461.
  • 48. Chawla N.. Bowyer K., Hall L., Kegelmeyer W.: SMOTE Synthetics Minority Over-sampling Technique. Journal of Artificial Intelligence Research 16,2002, s. 341-378.
  • 49. Chen S., Liu В.: Generating Classification Rules According to User's Existing Knowledge. Proc. of the SIAM International Conference on Data Mining (SDM-01), 2001.
  • 50. Chorbev I., Mihajlov D., Jolevski 1.: Web Based Medical Expert System with a Self Training Heuristic Rule Induction Algorithm. First International Conference on Advances in Databases, Knowledge, and Data Applications, 2009, s. 143-148.
  • 51. Christensen D.: Measuring confirmation. Journal of Philosophy XCVI, 1999, s. 43 7-461.
  • 52. Cichosz Р.: Systemy uczące się. WNT, Warszawa 2000.
  • 53. Clark Р., Niblett Т.: The CN2 induction algorithm. Machine Leaming 3, 1989, s. 261-283.
  • 54. Clark Р., Boswell R.: Rule induction with CN2: Some recent improvements. Machine Leaming - Proc. of the Fifth European Conference, Springer-Verlag, Berlin 1991, s. 151 - 163.
  • 55. Ciarke E., Waclawiw M.A.: Probabilistic rule induction from a medical research study database. Computers and biomedical research 29, 1996, s. 271-283.
  • 56. Cohen J.: A coefficient of agreement for nominal scales. Educational and Psych. Meas. 20, 1960, s. 37-46.
  • 57. Cohen W. W.: Fast effective rule induction. Proc. of the twelfth International Conference on Machine Leaming, 1995, s. 115-123.
  • 58. Сох D.R., Oakes D.: Analysis of survival data. Chapman & Hall, London 1984.
  • 59. Crupi V., Tentori K., Gonzalez M.: On Bayesian measures of evidential support: Theoretical and empirical issues. Philosophy of Science 74(2), 2007, s. 229-252.
  • 60. Daud N.R., Corne D.W.: Human readable rule induction in medical data mining. Lecture Notes in Electrical Engineering 27(7), 2009, s. 787-798.
  • 61. Delimata Р., Moshkov M., Skowron A., Suraj Z.: Inhibitory Rules in Data Analysis. Studies in Computational Intelligence 163, Springer, Berlin-Heidelberg 2009.
  • 62. Dembczyński K., Kotowski W. Słowiński R.: ENDER: a statistical framework for boosting decision rules. Data Mining and Knowledge Discovery 21,2010, s. 52-90.
  • 63. Demsar J.: Statistical Comparisons of Classifiers over Multiple Data Sets. Journal of Machine Learning Research 7,2006, s. 1-30.
  • 64. Diederich J.: Rule extraction form support vector machines. Studies in Computational Intelligence 80, Springer, Berlin-Heidelberg 2008.
  • 65. Drwal G., Sikora M.: Fuzzy decision support system with rough set based rule generation method. Lecture Notes in Artificial Intelligence 3066,2004, s. 727-733.
  • 66. Duch W., Adamczak R., Grabczewski K: Extraction of logical rules from backpropagation networks. Neural Processing Letters 7, 1998, s. 211-219.
  • 67. Duch W., Adamczak R., Grabczewski K: A new methodology of extraction, optimization and application of crisp and fuzzy logical rules. IEEE Transaction on Neural Networks, 11(2), 2001, s. 1-31.
  • 68. Duch W., Grudziński K.: Meta-learning via search combined with parameter optimization. Intelligent Information Systems 2002, Advances in Soft Computing, Physica-Verlag, 2002, s. 13-22.
  • 69. Duch W., Mandziuk J.: Chellenges for Computational Intelligence. Springer, Heidelberg 2007.
  • 70. Duda R.O., Gasching J, Hart P.E.: Model design in the Prospector consultant system for mineral exploration. Readings in Artificial Intelligence, 1981, s. 334-348.
  • 71. Dudoit S., Shafer J.P., Boldrick J.: Multiple Hypothesis Testing in Microarray Experiments. Statistical Science, 18, 2003, s. 71-103.
  • 72. Dzeroski S., Lavrac N.: Rule induction and instance-based learning applied in medical diagnosis. Technol Health Care 4(2), 1996, s. 203-221.
  • 73. Eells E., Fitelson В.: Symmetries and asymmetries in evidential support. Philosophical Studies 107(2), 2002, s. 129-142.
  • 74. Eisen M.B., Spellman P.T., Brown P.O., Botstein D.: Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA, 95, 1998, s. 14863-14868.
  • 75. Fawcett Т.: An introduction to ROC analysis. Partem Recognition Letters 27, 2006, s. 861-874.
  • 76. Fawcett Т.: PRIE a system for generating rulelist to maximize ROC performance. Data Mining and Knowledge Discovery 17, 2008, s. 207-224.
  • 77. Fayad U.M., PiateLsky-Shapiro G., Smyth Р., Uthurusamy R.: From data mining to knowledge discovery. Advances in knowledge discovery and data mining. MIT-Press, Cambridge 1996, s. 37-58.
  • 78. Ferguson D.E.: Fibonaccian searching. Communications of the ACM 3(12), 1960, s. 648.
  • 79. Ferreira C: Gene Expression Programming: Mathematical Modeling by an Artificial Intelligence. Studies in Computational Intelligence 26, 2006.
  • 80. Fisher R.A.: On the interpretation of x² from contingency tables, and the calculation of P. Journal of the Royal Statistical Society 85(1), 1922, s. 87-94.
  • 81. Fourier-Viger Р., Faghihi U., Nkambou R., Nguifo E.M.: CMRules Mining sequential mles common to several sequences. Knowledge-Based Systems 25,2012, s. 63-76.
  • 82. Frank A., Asuncion A.: UC1 Machine Leaming Repository (http://archive.ics,.uci.edu/ml). Irvine, CA: University of Califomia, School of Information and Computer Science, Califomia 2010.
  • 83. Freitas A.A.: On rule interestingness measures. Knowledge-Based Systems 12, 1999, s. 309-315.
  • 84. Friedman J.H., Popescu B.E.: Predictive leaming via rule ensembles. Annals of Applied Statistics 2(3), 2008, s. 916-954.
  • 85. Fiirnkranz J., Widmer G.: Incremental reduced error pruning. Proc. of the Tenth International Conference on Machine Leaming. Morgan Kaufman, New Brunswick 1994, s. 70-77.
  • 86. Fürnkranz J.: Pruning algorithms for rule leaming. Machine Leaming 27, 1997, s. 139-172.
  • 87. Fiirnkranz J.: Separate and conquer rule leaming. Artificial Intelligence Review 13, 1999, s. 3-54.
  • 88. Fürnkranz J.: Modeling Rule Precision. Lemen - Wissensentdeckung - Adaptivitat. Humbold-Universitat, Berlin 2004, s. 147-154.
  • 89. Fiirnkranz J.: Workshop on Advances in Inductive Rule Leaming. 15th European Conference on Machine Leaming, 2004, s. 20-24 (http://www.ke.tu-darmstadt.de/events/ECML-PKDD-04-WS/opening-remarks.pdf).
  • 90. Fiirnkranz J., Flach P.A.: ROC 'n' Rule Leaming - Towards a Better Understanding of Covering Algorithms. Machine Leaming 58, 2005, s. 39-77.
  • 91. Gago Р., Beneto C: A Metric for Selection of the Most Promising Rules. Lecture Notes in Computer Science 1510, 1998, s. 19-27.
  • 92. Gains В.: Transforming rules and trees into comprehensible knowledge structures. Advances in knowledge discovery and data mining. MIT-Press, Cambridge 1996, s. 205-228.
  • 93. Gamberger D., Lavrac N.: Confirmation rule sets. Lecture Notes in Artificial Intelligence 1910, 2000, s. 34-43.
  • 94. Gamberger D., Lavrac N.: Expert-guided subgroup discovery: methodology and application. Journal of Artificial Intelligence Research 17, 2002, s. 501-527.
  • 95. Garcia S., Herrera F.: An Extension on Statistical Comparisons of Classifier over Multiple Data Sets for all Pairwise Comparisons. Journal of Machine Learning Research 9, 2008, s. 2677-2694.
  • 96. Geng L., Hamilton H.J.: Choosing the Right Lens: Finding What is Interesting in Data Mining. W [128].
  • 97. Geng L., Hamilton H.J.: Interestingness measures for data mining: A survey. ACM Computing Surveys 39(3), 2006.
  • 98. Gomolińska A.: On Certain Rough lnclusion Functions. Transactions on Rough Sets IX. LNCS 5490,2008, s. 35-55.
  • 99. Goodman R.M., Smyth Р.: The induction of probabilistic rule sets - the ITRULE algorithm. Proc. of the sixth intemational workshop on machine learning. Morgan Kaufmann, SanMateo 1989, s. 129-132.
  • 100. Gordon A., Glazko G, Qiu X., Yakovlev A.: Control of the mean number of false discoveries, bonferroni and stability of multiple testing. The Annals of Applied Statistics 1,2007, s. 179-190.
  • 101. Góra G, Wojna A.: RIONA: a new classification system combining rule induction and instance based learning. Fundamenta Informaticae 51(4), 2002, s. 369-390.
  • 102. Graf E., Schmoor C, Sauerbrei W., Schumacher M.: Assessment and comparison of prognostic classification schemes for survival data. Statistics in Medicine 18(17-18), 1999, s. 2529-2545.
  • 103. Grabczewski K.: Zastosowanie kryterium separowalności do generowania reguł klasyfikacji na podstawie baz danych. Rozprawa doktorska. Instytut Badań Systemowych PAN, Warszawa 2003.
  • 104. Greco S., Matarazzo В., Słowiński R.: Rough sets theory for multicriteria decision analysis. European Journal of Operational Research 129, 2001, s. 1-47.
  • 105. Greco S., Matarazzo В., Słowiński R., Stefanowski J.: Importance and Interaction of Conditions in Decision Rules. Lecture Notes in Computer Science 2475, 2002, s. 255-262.
  • 106. Greco S., Pawlak Z., Słowiński R.: Can Bayesian confirmation measures be useful for rough set decision rules? Engineering Applications of Artificial Intelligence 17, 2004, s. 345-361.
  • 107. Greco S., Matarazzo В., Słowiński R., Stefanowski J.: Rough Membership and Bayesian Confirmation Measures for Parameterized Rough Sets. Lecture Notes in Artificial Intelligence 3641, 2005, s. 314-324.
  • 108. Greco S., Matarazzo В., Pappalard N., Słowiński R.: Measuring expected effects of interventions based on decision rules. Journal of Experimental and Theoretical Artificial Intelligence 17(1-2), 2005, s. 103-118.
  • 109. Greco S., Matarazzo В., Słowiński R.: Customer Satisfaction Analysis based on Rough Set Approach. Zeitschrift für Betriebswirtschaft 77(3), 2007, s. 325-339.
  • 110. Greco S., Słowiński R., Stefanowski J.: Evaluating importance of conditions in the set of discovered rules. Lecture Notes in Artificial Intelligence 4482, 2007, s. 314-321.
  • 111. Greco S., Matarazzo В., Słowiński R.: Parameterized rough set model using rough membership and Bayesian confirmation measures. International Journal of Approximate Reasoning 49, 2008, s. 285-300.
  • 112. Greco S., Słowiński R., Szczęch I.: Alternative normalization schemas for Bayesian confirmation measures. Lecture Notes in Computer Science 6178, 2010, s. 230-239.
  • 113. Greco S., Słowiński R., Szczęch 1.: Properties of rule interestingness measures and alternative approaches to normalization of measures. Information Sciences 216, 2012, s. 1-16.
  • 114. Gruber T.R.: Toward principles for the design of ontologies used for knowledge sharing. International Journal of Human-Computer Studies 43(4-5), 1995, s. 907-928.
  • 115. Gruca A.: Analysis of GO composition of gene clusters by using multiattribute decision mles. Biocybemetics and Biomedical Engineering 28(4), 2008, s. 21-31.
  • 116. Gruca A., Sikora M., Polański A.: RuleGO: A logical rule-based tool for description of gene groups by means of Gene Ontology. Nucleic Acids Research 39, 2011, W293-W301.
  • 117. Graca A., Sikora M.: Identification of the compound subjective rule interestingness measure for rule-based functional description of genes. Lecture Notes in Computer Sciences 7557, 2012, s. 125-134.
  • 118. Grudziński K., Grochowski M., Duch W.: Pruning Classification Rules with Reference Vector Selection Methods. Lecture Notes in Artificial Intelligence 6113, 2010, s. 347-354.
  • 119. Grzymała-Busse J.: LERS - a system for leaming from examples based on rough sets. W[276],s. 3-18.
  • 120. Grzymała-Busse J., Wang С. Р.: Classification Methods in Rule Induction. Intelligent Information Systems. Proc. of the Workshop IIS, 1996, s. 120-126.
  • 121. Grzymała-Busse J., Goodwin L., Grzymała-Busse W., Zheng X.: An approach to imbalanced data sets based on changing rule strength. Proc. of learning from imbalanced data sets, AAAI workshop at the 17th conference on Al, 2000, s. 69-74.
  • 122. Grzymała-Busse J., Goodwin L., Zhang X.: Increasing sensitivity of preterm birth by changing rule strengths. Pattern Recognition Letters 24(6), 2003, s. 903-910.
  • 123. Grzymała-Busse J., Ziarko J.W.: Data mining based on rough sets. Data Mining Opportunities and Challenges. IGI Publishing, Hershey 2003, s. 142-173.
  • 124. Grzymała-Busse J., Stefanowski J., Wilk S.: A comparison of two approaches to data mining from imbalanced data. Journal of Intelligent Manufacturing 16, 2005, s. 565-573.
  • 125. Grzymała-Busse, J.W.: Characteristic relations for incomplete data: A generalization of the indiscernibility relation. Transactions on rough sets IV. LNCS 3700, 2005, s. 58+68.
  • 126. Grzymała-Busse J.: MLEM2 Rule Induction Algorithms: With and Without Merging Intervals. Data Mining: Foundations and Practice. Studies in Computational Intelligence 118, Springer, Berlin-Heidelberg 2008, s. 153-164.
  • 127. Gudyś A., Sikora M.: An algorithm for decision rules aggregation. Proc. of the Int. Conference on Knowledge Discovery and Information Retrieval, Valencia, Spain 2010, s. 216-225.
  • 128. Guillet F., Hamilton H.J.: Quality measures in data mining. Studies in Computational Intelligence 43, Springer-Verlag, New York 2007.
  • 129. Gupta K.G., Strehl A., Ghosh J.: Distance based clustering of association mles. Proc. of ANNIE, Intelligent Engineering Systems Through Artificial Neural Networks, New York 1999, s. 759-764.
  • 130. Hand D.J.: Measuring classifier performance: a coherent alternative to the area under the ROC curve. Machine Learning 77,2009, s. 103-123.
  • 131. Hastie Т., Tibshirani R., Friedman J.H.: Elements of statistical learning: data mining, inference, and prediction. Springer, New York 2003.
  • 132. Hilderman R.J., Hamilton H.J.: Knowledge Discovery and Measures of lnterest. Kluwer Academic, Boston, MA 2001.
  • 133. Hoeffding W.: Probability inequalities for sums of bounded random variables. Journal of the American Statistical Association 58, 1963, s. 13-30.
  • 134. Holm S.: A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistic 6, 1979, s. 65-70.
  • 135. Hühn J., Hullermeier E.: FURIA: an algorithm for unordered fuzzy rule induction. Data Mining and Knowledge Discovery 19, 2009, s. 293-319.
  • 136. Huynh Х.Н., Guillet F., Briand H.: A data analysis approach for evaluating the behavior of interestingness measures. Proc. of the Discovery Science Conference, 2005, s. 330-337.
  • 137. Hvidsten T.R., Legreid A., Komorowski J.: Leaming mle-based models of biological process form gene ontology expression time profiles using Gene Ontology. Bioinformatics 19(9), 2003, s. 1116-1123.
  • 138. Ilczuk G, Wakulicz-Deja A.: Attribute Selection and Rule Generation Techniques for Medical Diagnosis Systems. Lecture Notes in Artificial Intelligence 3642, 2005, s. 352-361.
  • 139. Ishibuchi H., Yamamoto Т.: Effect of Three-Objective Genetic Rule Selection on the Generalization Ability of Fuzzy Rule-based Systems. Lecture Notes in Computer Science 2632, 2003, s. 608-622.
  • 140. Iyer V.R., Eisen M.B., Ross D.T., Schuler-Moore G. Т., Lee J.C., Trent J.M., Staudt L.M., Hudson J., Boguski M.S., Lashkari D., Shalon D., Botstein D., Brown P.O.: The transcriptional program in the response of human fibroblasts to semm. Science 283, 1999, s. 83-87.
  • 141. Jacquet-Lagreze E., Siskos J.: Assessing a set of additive utility functions for multicriteria decision-making, the UTA method. European Journal of Operational Research 10, 1982, s. 151 - 164.
  • 142. Jankowski N., Duch W., Grąbczewski K.: Meta-Learning in Computational Intelligence, Springer, Berlin-Heidelberg 2011.
  • 143. Janssen F., Fiirnkranz J.: On the quest for optimal rule leaming heuristics. Machine Leaming 78,2010, s. 343-379.
  • 144. Janssen F., Fiirnkranz J.: Rule-Based Regression via Dynamie Reduction to Classification. Proc. of the 22nd International Joint Conference on Artificial Intelligence, 1JCAI/AAAI, 2011, s. 1330-1335.
  • 145. Janusz A.: Discovering mles-based similarity in microarray data. Lecture Notes in Artificial Intelligence 6178, 2010, s. 49-58.
  • 146. Jaworski W.: Hybridization of Rough Sets and Statistica Leaming Theory. Transactions on Rough Sets XIII. LNCS 6499, 2011, s. 39-55.
  • 147. Jerald F.: Statistical Models and Methods for Lifetime Data. 2nd edition. John Wiley and Sons, Hoboken 2003.
  • 148. Jovanowski V., Lavrac N.: Classification Rule Leaming with APRIORI-C. Lecture Notes in Computer Science 2258, 2001, s. 44-51.
  • 149. Joyce J.: The Foundations of Causal Decision Theory. Cambridge University Press, Cambridge 1999.
  • 150. Kabiesz J.: Effect of the form of data on the quality of mine tremors hazard forecasting using neural networks. Geotechnical and Geological Engineering, 24(5), 2005, s. 1131-1147.
  • 151. Kamber M., Shinghal R.: Evaluating the interestingness of characteristic rules. Proc. of the Second International Conference on Knowledge Discovery and Data Mining, AAA1, 1996, s. 263-266.
  • 152. Kaneiwa K.: A rough set approach to mining connections from information systems. Proc. of the 2010 ACM Symposium on Applied Computing. ACM, 2010, s. 990-996.
  • 153. Kannan S., Bhaskaran R.: Association Rule Pruningu based on Interestingness Measures with Clustering. International Journal of Computer Science 6(1), 2009, s. 35-43.
  • 154. Karp R.M.: Reducibility Among Combinatorial Problems. Complexity of Computer Computations. Plenum, New York 1972, s. 85-103.
  • 155. Kapłan E.L., Meier Р.: Nonparametric estimation from incomplete observations. J. Am. Stat. Assoc. 53, 1958, s. 457-481.
  • 156. Kaufman K.A., Michalski R.S.: Learning in Inconsistent World, Rule Selection in STAR/AQ18. Machine Learning and Inference Laboratory Report P99-2, February 1999.
  • 157. Kavsek В., Lavrać N.: APRIORI-SD: Adapting association rule learning to subgroup discovery. Applied Artificial Intelligence 20, 2006, s. 543-583.
  • 158. Kawłak K., Porwolik J., Mielcarek M, Gorczyńska E. et al.: Higher CD34+ and CD3+ celi doses in the graft promote long-term survival, and have no impact on the incidcnce of serve acute or chronic Graft-versus-host disease. American Society for Blood and Marrow Transplantation. Biology of Blood Marrow Transplantation 16, 2010, s. 1388-1401.
  • 159. Kerber R.: Chimerge: Discretization of numeric attributes. Proc. of the Tenth National Conference on Artificial Intelligence. MIT Press, San Jose 1992, s. 123-128.
  • 160. Khatri Р., Draghici S.: Ontological analysis of gene expression data: current tools, limitations and open problems. Bioinformatics 21(18), 2005, s. 3587-3595.
  • 161. Kim H., Loh W.Y.: Classification trees with bivariate linear discriminant node modeis. Journal of Computational and Graphical Statistics 12,2003, s. 512+530.
  • 162. Klösgen W.: Ехріога: A Multipattern and Multistrategy Discovery Assistant. Advances in Knowledge Discovery and Data Mining. AAA/MIT Press, Menlo Park 1996, s. 249-271.
  • 163. Kohavi R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. Proc. of the 14th Int. Joint conference on Artificial intelligence. Morgan Kaufmann, Philadelphia 1995, s. 1137-1143.
  • 164. Kohavi R., George H.J.: Wrappers for feature subset selection. Artificial Intelligence 91, 1997, s. 273-324.
  • 165. Kononenko I., Bratko I.: Information-based evaluation criterion for classifier's performance. Machine Leaming 6, 1991, s. 67-80.
  • 166. Krętowski M., Stepaniuk J.: Selection of Objects and Attributes, a Tolerance Rough Set Approach. Proc. of Ninth International Symposium on Methodologies for Intelligent Systems, 1996, s. 169-180.
  • 167. Kronek L.P., Reddy A.: Logical analysis of survival data: prognostic survival models by detecting high-degree interactions in right-censored data. Bioinformatics 24, 2008, s. 248-253.
  • 168. Kryszkiewicz M., Rybiński H.: Computation of reducts of composed information systems. Fundamenta Informaticae, 27, 1996, s. 183-195.
  • 169. Kryszkiewicz M.: Representative association rules. Lecture Notes in Computer Science 1394, 1998, s. 198-209.
  • 170. Kryszkiewicz M.: Rules in incomplete information systems. Information Sciences 113 (3-4), 1999, s. 271-292.
  • 171. Kryszkiewicz M.: Non-Derivable Item Set and Non-Derivable Literal Set Representations of Patterns Admitting Negation. Lecture Notes in Computer Science 5691, 2009, s. 138-150.
  • 172. Krzystanek Z., Sikora M., Trenczek S.: System rozmyty wspomagający identyfikację źródeł emisji tlenku węgla w wyrobiskach kopalnianych. Mechanizacja i Automatyzacja Górnictwa 2, 2012.
  • 173. Kużelewska U., Stepaniuk J.: Information Granulation: A Medical Case Study. Transactions on Rough Sets IX. LNCS 5390,2008, s. 96-113.
  • 174. Latkowski R., Mikołajczyk M.: Data decomposition and decision rule joining for classification of data with missing values. Transactions on Rough Sets I.LNCS 3100, 2004, s. 299-320.
  • 175. Laurikkala J.: Improving identification of difficult smali classes by balancing class distribution. Lecture Notes in Artificial Intelligence 2101, 2001, s. 63-66.
  • 176. Lavrac N., Flach P.A., Zupan В.: Rule Evaluation Measures: A Unifying View. Lecture Notes in Artificial Intelligence 1634, 1999, s. 174-185.
  • 177. Lavrac N., Kavsek В., Flach Р.: Subgroup discovery with CN2-SD. Journal of Machine Leaming Research 5, 2004, s. 153-188.
  • 178. Lenca Р., Meyer Р., Vaillant В., Lallich S.: A multicriteria decision aid for interestingness measure selection. Tech. Rep. LUSS1-TR-2004-01-EN, LUSS1 Department, GET/ENST, Bretagne, France 2004.
  • 179. Lenca Р., Vaillant В., Meyer Р., Lallich S.: Association Rule Interestingness Measures: Experimental and Theoretical Studies. W
  • 180. Leśniak A., Isakow Z.: Space-time clustering of seismic events and hazard assessment in the Zabrze-Bielszowice coal mine, Poland. Int. Journal of Rock Mechanics and Mining Sciences 46,2009, s. 918-928.
  • 181. Li J.: On optimal rule discovery. IEEE Transactions on Knowledge and Data Engineering 18(4), 2006, s. 1-12.
  • 182. Li J., Cercone N.: A Method of Discovering Important Rules using Rules as Attributes. International Journal of Intelligent Systems 25, 2010, s. 180-206.
  • 183. Ligęza A.: Logical Foundations for Rule-Based Systems. Studies in Computational Intelligence 11, Springer-Verlag, Berlin-Heidelberg 2006.
  • 184. Lindgren Т., Bostróm H.: Resolving rule conflicts with double induction. Intelligent Data Analysis 8(5), 2004, s. 457-468.
  • 185. Liu H., Liu L., Zhang H.: A fast pruning redundant rule method using Galois connection. Applied Soft Computing 11, 2011, s. 130+137.
  • 186. Łęski J.: Sieci neuronowo-rozmyte. WNT, Warszawa 2008.
  • 187. McGarry K.: A survey of interestingness measures for knowledge discovery. The Knowledge Engineering Review 20(1), Cambridge University Press, 2005, s. 39-61.
  • 188. Martens D., Baesens В., Van Gestel Т., Vanthienen J.: Comprehensible credit scoring modeis using rule extraction from support vector machines. European Journal of Operational Research 183(3), 2007, s. 1466-1476.
  • 189. Michalski R.S.: Discovering Classification Rules Using variable-Valued Logic System VL 1. Proc. of the 3rd International Joint Conference on Artificial Intelligence, 1973, s. 162-172.
  • 190. Michalski R.S., Carbonell J.G., Mitchel T.M.: Machine Learning vol. I. Morgan Kaufmann, Los Altos 1983.
  • 191. Michalski R.S.: O naturze uczenia się - problemy i kierunki badawcze. Informatyka No. 2,3, 1988.
  • 192. Michalski R.S., Bratko 1., Kubar M.: Machine learning and data mining. John Wiley and Sons, London 1998.
  • 193. Michalski R.S., Wojtusiak J.: Generalizing Data in Natural Language. Lecture Notes in Computer Sciecnes 4585,2007, s. 29-39.
  • 194. Michie D., Spiegelhalter D.J., Taylor CC: Machine Learning, neural and statistical classification. Ellis Horwood Limited, England 1994.
  • 195. Midelfart H.: Supervised Learning in Gene Ontology Part I: A Rough Set Framework. Transactions on Rough Sets IV. LNCS 3700,2005, s. 69-97.
  • 196. Midelfart H.: Supervised Learning in Gene Ontology Part II: A Bottom-Up Algorithm. Transactions on Rough Sets IV. LNCS 3700, 2005, s. 98-124.
  • 197. Mikołajczyk M.: Reducing number of decision rules by joining. Lecture Notes in Artificial Intelligence 2475,2002, s. 425-432.
  • 198. Moshkov M., Piliszczuk M., Zielosko В.: On construction of partial reducts and irreducible partial decision rules. Fundamenta Informaticae 75(1-4), 2007, s. 357-374.
  • 199. Moshkov M., Piliszczuk M., Zielosko B: Partial Covers, Reducts and Decision Rules in Rough Sets. Studies in Computational Intelligence 145, Springer, Berlin-Heidelberg 2008.
  • 200. Mozina M., Zabkar J., Bratko 1.: Argument based machine leaming. Artificial Intelligence 171,2007, s. 922-937.
  • 201. Mrózek A.: Rough sets in computer implementation of rule-based control of industrial processes. W [276], s. 19-33.
  • 202. Mrózek A., Płonka L.: Knowledge Representation in Fuzzy and Rough Controllers. Fundamenta Informaticae 30(3-4), 1997, s. 299-311.
  • 203. Mrózek A., Sikora M.: Synteza automatu modelującego zachowanie się człowieka w procesie podejmowania decyzji. Zeszyty Naukowe Politechniki Śląskiej s. Informatyka z. 1377, 1997, s. 233-250.
  • 204. Muggleton S., De Raedt L.: Inductive logie programming: Theory and methods. Journal of Logic Programming 12, 1994, s. 1-80.
  • 205. Murthy S.K., Kasif S., Salzberg S.: A system for induction of oblique decision trees. Journal of Artificial Intelligence Research 2, 1994, s. 1-32.
  • 206. Napierała K., Stefanowski J.: Argument Based Generalization of MODLEM Rule Induction Algorithm. Lecture Notes in Computer Science 6086, 2010, s. 138-147.
  • 207. Napierała K., Stefanowski J.: BRACID: a comprehensive approach to leaming rules form imbalanced data. Journal of Intelligent Systems 39(2), 2012, s. 335-373.
  • 208. Nguyen H.S., Nguyen S.H.: Some efficient algorithms for rough set methods. Proc. of the Sixth International Conference, Information Processing and Management of Uncertainty in Knowledge-Based Systems, 1996, s. 1451-1456.
  • 209. Nguyen S.H., Nguyen H.S.: Discretization Methods in Data Mining. Rough Sets in Knowledge Discovery. Physica-Verlag, Heidelberg, 1998, s. 451-482.
  • 210. Nguyen S.H.: Regularity analysis and its applications in Data Mining. Rozprawa doktorska. Uniwersytet Warszawski Wydział Matematyki Informatyki i Mechaniki, 1999.
  • 211. Nguyen H.S.: Approximate Boolean Reasoning: Foundations and Applications in Data Mining. Transactions on Rough Sets V. LNCS 4100, 2006, s. 334-506.
  • 212. Nguyen H.S., Jankowski A., Peters J.F., Skowron A., Stepaniuk J., Szczuka M.: Discovery of Process Modeis form Data and Domain Knowledge: A Rough-Granular Approach. Novel Developments in Granular Computing. Information Scieces Reference IGI Global, Hershey-New York 2010.
  • 213. Novak P.K., Lavrac N.: Supervised Descriptive rule discovery: A unifying survey of contrast set, emerging partem and subgroup mining. Journal of Machine Learning Research 10,2009, s. 377-403.
  • 214. Nowak A., Wakulicz-Deja A.: The concept of the hierarchical clustering algorithms for rules based systems. Advances in Soft Computing. Springer, Berlin-Heideleber-New York 2005, s. 565-570.
  • 215. Ohsaki M., Abe H., Tsumoto S., Yokoi H., Yamaguchi Т.: Evaluation of rule interestingness measures in medical knowledge discovery in databases. Artificial Intelligence in Medicine 41, 2007, s. 177-196.
  • 216. Orlau C, Wehenkel L.: A complete fuzzy decision tree technique. Fuzzy Sets and Systems 138,2003, s. 221-254.
  • 217. Orłowska E.: Dynamie Information Systems. Fundamenta. Informaticae 5, 1983, s. 101-118.
  • 218. Padmanabhan В., Tuzhiłin A.: A belief-driven method for discovering unexpected pattems. Proc. of the Fourth Int. Conference on Knowledge Discovery and Data Mining, 1998, s. 94-100.
  • 219. Pattaraintakorn Р., Cercone N.: A foundation of rough sets theoretical and computational hybrid intelligent system for survival analysis. Computers and Mathematics with Applications 56, 2008, s. 1699-1708.
  • 220. Pawlak Z.: Rough sets: Theoretical aspects of reasoning about data. Kluwer Academic Publishers Norwell, MA, USA, 1992.
  • 221. Pednault E.: Minimal-Length Encoding and Inductive Inference. Knowledge Discovery in Databases. MIT Press, Cambridge 1990.
  • 222. Pham D.T., Afify A.A. Three New MDL-Based Pruning Techniąues for Robust Rule Induction. Proc. of the Inst. of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2006, s. 553-564.
  • 223. Piatetsky-Shapiro G.: Discovery, analysis and presentation of strong rules. Knowledge Discovery in Databases. MIT Press, Cambridge, MA 1991, s. 229-248.
  • 224. Pindur R., Sasmuga R., Stefanowski J.: Hyperplane Aggregation of Dominance Decision Rules. Fundamenta Informaticae 61(2), 2004, s. 117-137.
  • 225. Polański A., Kimmel M.: Bioinformatics. Springer, Berlin-Heidelberg-New York 2007.
  • 226. Polkowski L., Skowron A., Żytkow J.: Tolerance based rough sets. Soft computing: Rough sets, fuzzy logie, neural networks, uncertainty management. Simulation Councils Inc., San Diego, USA 1995, s. 55-58.
  • 227. Polkowski L., Skowron A.: Rough mereology: A new paradigm for approximate reasoning. International Journal of Approximated Reasoning 15, 1996, s. 333-365.
  • 228. Provost F., Fawcett Т., Kohavi R.: The case against aceuracy estimation for comparing induction algorithms. Proc. of the Fifteenth Int. Conference on Machine Leaming. Morgan Kaufman, San Francisco 1997, s. 445-453.
  • 229. R Development Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria 2011, http://www.R-project.org/.
  • 230. Radspiel-Troger M., Rabenstein Т., Schneider H.T., Lausen В.: Comparison of tree-based methods for prognostic stratificiation of survival data. Artificial Intelligence in Medicine 28,2003, s. 323-341.
  • 231. Rafea A.A., Shaflik S.S., Shaalan K.F.: An interactive system for association mle discovery for life assurance. Proc. of the Int. Conference on Computer, Communication and Control Technologies CCCT, 2004, s. 32-37.
  • 232. Ramsey P.H.: Multiple Comparison of Independent Means. Applied analysis of variance in behavioral science. Chapman & Hall/CRC, Florida 1993, s. 25-62.
  • 233. Raś Z.W., Daradzińska A., Liu X.: System ADReD for discovering rules based on hyperplanes. Engineering Applications of Artificial Intelligence 17(4), 2004, s. 401-406.
  • 234. Riddle Р., Segal R., Etzioni O.: Representation design and brute-force induction in a Boeing manufacturing domain. Journal of Applied Artificial Intelligence 8, 1994, s. 125-147.
  • 235. Rioult F., Zanuttini В., СгетШеих В.: Nonredundant Generalized Rules and Their Impact in Classificiation. Advances in Intelligent Information Systems. Studies in Computational Intelligence 265, 2010, s. 3-25.
  • 236. Rudajev V., Ćiż R.: Estimation of Mining Tremor Occurrence by Using Neural Networks. Риге and Applied Geophysics 154(1), 1999, s. 57-72.
  • 237. Quinlan J.R.: Leaming with continuous classes, Proc. of the International Conference on Artificial Intelligence (АI’92), 1992.
  • 238. Quinlan J.R.: C4.5: Programs for Machine Leaming. Morgan Kaufman Publishers Inc., USA, 1993.
  • 239. Quinlan J.R.: Leaming First-Order Definitions of Functions. Journal of Artificial Intelligence Research 5, 1996, s. 139-161.
  • 240. Sahar S.: Interestingness measures - On determining what is interesting. Data Mining and Knowledge Discovery Handbook. Part 5. Springer Yerlag, Singapore 2010, s. 603-612.
  • 241. Schumacher M., Hollander N., Schwarzer G., Sauerbrei W.: Prognostic factor studies. Handbook of Statistics in Clinical Oncology. Taylor & Francis Group, New York 2006.
  • 242. Shan N., Ziarko W.: Data-based acąuisition and incremental modification of classification rules. Computational Intelligence 11, 1995, s. 357-370.
  • 243. Shapley L.S.: A value for n-person games. Contributions to the Theory of Games II, Princeton University Press, Princeton 1953, s. 307-317.
  • 244. Sikora M: Filtracja zbioru reguł decyzyjnych wykorzystująca funkcje oceny jakości reguł. Studia Informatica 22(4), 2001, s. 57-72.
  • 245. Sikora M., Widera D.: Identification of diagnostics states for dewater pumps working in abyssal mining pump stations. Proc. of the XV International conference on System Sciences, 2004, s. 394-402.
  • 246. Sikora M.: Approximate decision rule induction algorithm using rough sets and rule-related quality measures. Archives of Theoretical and Applied Informatics 4, 2004, s. 1-19.
  • 247. Sikora M., Krzykawski D.: Zastosowanie metod eksploracji danych do analizy wydzielania się dwutlenku węgla w pomieszczeniach stacji odwadniania kopalń węgla kamiennego. Mechanizacja i Automatyzacja Górnictwa, 413(6), 2005.
  • 248. Sikora M.: An algorithm for generalization of decision rules by joining. Foundations of Computing and Decision Sciences 30(3), 2005, s. 227-239.
  • 249. Sikora M.: Fuzzy rules generation method for classification problems using rough sets and genetic algorithms. Lecture Notes in Artificial Intelligence 3641, 2005, s. 383-391.
  • 250. Sikora M., Sikora В.: Application of Machine Leaming for prediction a methane concentration in a coal-mine. Archives of Mining Sciences 51(4), 2006, s. 475-492.
  • 251. Sikora M.: Rule quality measures in creation and reduction of data mle models. Lecture Notes in Artificial Intelligence 4259, 2006, s. 716-725.
  • 252. Sikora M.: Application of machine leaming and soft computing techniques in monitoring systems' data analysis by ехатріе of dewater pumps monitoring system. Archives of Control Sciences 17(4), 2007, s. 369-391.
  • 253. Sikora M.: Adaptacyjne stosowanie miar oceniających w algorytmach indukcji reguł. Bazy danych - Nowe technologie - Architektura, metody formalne i zaawansowana analiza danych. Wydawnictwa Komunikacji i Łączności, Warszawa 2007, s. 295-305.
  • 254. Sikora M.: Decision rule-based data models using TRS and NetTRS - methods and algorithms. Transactions on Rough Sets XI. LNCS 5946,2010, s. 130-160.
  • 255. Sikora M., Gruca A.: Quality improvement of rule based gene groups descriptions using information about GO terms importance occurring in premises of determined rules. International Journal of Applied Mathematics and Computer Science 20(3), 2010, s. 555-570.
  • 256. Sikora M, Wróbel Ł.: Application of rule induction algorithms for analysis of data collected by seismic hazard monitoring systems in coal mines. Archives of Mining Sciences 55, 2010, s. 91-114.
  • 257. Sikora M., Gruca A.: Induction and selection of the most interesting Gene Ontology based multiattribute rules for descriptions of gene groups. Partem Recognition Letters 32(2), 201 l,s. 258-269.
  • 258. Sikora M.: Induction and pruning of classification rules for prediction of microseismic hazards in coal mines. Expert Systems with Applications 38(6), 2011, s. 6748-6758.
  • 259. Sikora M., Krzystanek Z., Bojko В., Spiechowicz K.: Application of hybrid machine learning method for description and on-line assessment of methane hazards in a mine excavation. Journal of Mining Sciences 47(4), 2011, s. 493-505.
  • 260. Sikora M., Michalak M., Sikora В.: Approximation of a coal mass by an ultrasonic sensor using regression rules. Lecture Notes on Computer Science 6743, 2011, s. 345-350.
  • 261. Sikora M., Wróbel Ł.: Data-driven Adaptive Selection of Rule Quality Measures for lmproving the Rule Induction Algorithm. Lecture Notes in Artificial Intelligence 6743, 201 l,s. 279-287.
  • 262. Sikora M., Sikora В.: Rough natural hazard monitoring, [in:] Peters G, Lingras Р., Ślęzak D., Yao Y. (eds.), Rough Sets: Selected Methods and Applications in Management and Engineering. Springer, Berlin 2012.
  • 263. Sikora M., Sikora В.: Combination of regression rule induction, k-nearest neighbors and time series forecasting methods to improve prediction modeis applied in systems monitoring natural hazards and machinery. International Journal of Applied Mathematics and Computer Science 22(2), 2012, s. 477-491 .
  • 264. Sikora M., Wróbel Ł.: Data-driven Adaptive Selection of Rule Quality Measures for Improving Rule Induction and Filtration Algorithms. International Journal of General Systems (w druku, ukaże się w numerze 42(4), 2013).
  • 265. Sikora M., Gudyś A.: CH1RA - Convex Hull Based lterative Algorithm of Rules Aggregation. Fundamenta Informaticae (w druku, ukaże się w numerze 123, 2013).
  • 266. Sikora M.: Redefmition of classification rules by evaluation of elementary conditions occurring in the rule premises. Fundamenta Informaticae (w druku, ukaże się numerze 123, 2013).
  • 267. Sikora M., A. Skowron, Wróbel Ł.: Rule Quality Measure-Based Induction of Unordered Sets of Regression Rules. Lecture Notes in Computer Sciences 7557, 2012, s. 162-171.
  • 268. Sikora M., Wróbel Ł., Mielcarek M., Kawłak K.: Decision rule-based analysis of survival data: methodology and application in discovering survival factors of patients after bone marrow transplantation. Medical Informatics and Technologies (przyjęte do druku).
  • 269. Siskos Y., Grigoroudis E., Matsatsinis N.F.: UTA Methods. State of the Art in Multiple Criteria Decision Analysis, Springer, New York 2005, s. 297-343.
  • 270. Skowron A., Rauszer C.: The Discernibility Matrices and Functions in Information systems. W [276], s. 331-362.
  • 271. Skowron A., Stepaniuk J.: Tolerance Approximation Spaces. Fundamenta Informaticae 27(2-3), 1996, s. 245-253.
  • 272. Skowron A., Wang H., Wojna A., Bazan J.G.: A Hierarchical Approach to Multimodal Classification. Lecture Notes in Computer Science 3642, 2005, s. 119-127.
  • 273. Skowron A., Szczuka M.S.: Toward Interactive Computations: A Rough-Granular Approach. Advances in Machine Leaming II. Dedicated to the Memory of Professor Ryszard S. Michalski. Studies in Computational Intelligence 263, 2010, s. 23-42.
  • 274. Skowron A.: Discovery of Processes and Their Interactions form Data and Domain Knowledge. Lecture Notes in Artificial Intelligence 6070,2010, s. 12-21.
  • 275. Skowron A., Stepaniuk J., Świniarski R.: Modeling rough granular computing based on approximation spaces. Information Sciences 184, 2012, s. 20-43.
  • 276. Słowiński R.: Intelligent decision support: Handbook of Applications and Advances of Rough Sets Theory. Kluwer Academic Publishers, Dordrecht-Boston-London 1992.
  • 277. Słowiński R., Greco S.: Measuring attractiveness of mles from the viewpoint of knowledge representation, prediction and efficiency of intervention. Lecture Notes in Artificial Intelligence 3528, 2005, s. 11-22.
  • 278. Słowiński K., Stefanowski J., Siwiński D.: Application of rule induction and rough sets to verification of megnetic resonance diagnosis. Fundamenta Informaticae 53, 2002, s. 345-363.
  • 279. Smyth Р., Goodman R.M.: Rule induction using information theory. Proc. of Knowledge Discovery in Databases. MIT Press, Boston 1991, s. 159-176.
  • 280. Srinivasan A: Note on the location of optimal classifiers in n-dimensional ROC space. Technical Report PRG-TR-2-99, Oxford University Computing, Oxford 1999.
  • 281. Stajduhar I., Dalbelo-Basic В.: Uncensoring censored data for machine leaming: A likelihood-based approach. Expert Systems with Applications 2012.
  • 282. Stąpor K.: Automatyczna klasyfikacja obiektów. Problemy Współczesnej Nauki. Teoria i Zastosowania. Akademicka Oficyna Wydawnicza ЕХІТ, Warszawa 2005.
  • 283. Stefanowski J.: Rough set based rule induction techniques for classification problems. Proc. Of the 6lh European Congerss of Intelligent Techniques and Soft Computing, 1998, s.107-119.
  • 284. Stefanowski J.: Algorytmy indukcji reguł decyzyjnych w odkrywaniu wiedzy. Wydawnictwo Politechniki Poznańskiej, s. Rozprawy, nr 361, 2001.
  • 285. Stefanowski J., Vanderpooten D.: Induction of Decision Rules in Classification and Discovery-Oriented Perspectives. International Journal of Intelligent Systems 16, 2001, s. 13-27.
  • 286. Stefanowski J., Wilk S.: Evaluating business credit risk by means of approach integrating decision rules and casc based learning. International Journal of Intelligent Systems in Accounting, Finance and Management 10,2001, s. 97-114.
  • 287. Stefanowski J., Tsoukias A.: Incomplete information tables and rough classification. Computational Intelligence 17(3), 2001, s. 545-566.
  • 288. Stefanowski J., Wilk S.: Combining rough sets rules based classifiers for handling imbalanced data. Fundamenta Informaticae 72(1-3), 2006, s. 379-391.
  • 289. Stefanowski J.: On Combined Classifiers, Rule Induction and Rough Sets. Transactions on Rough Sets VI. LNCS 4374, 2007, s. 329-350.
  • 290. Stepaniuk J.: Optimizations of Rough Set Model. Fundamenta Informaticae 25, 1998, s. 1 - 19.
  • 291. Stepaniuk J.: Rough Set Data Mining of Diabetes Data. Lecture Notes in Computer Science 1609, 1999, s. 457-465.
  • 292. Stepaniuk J.: Knowledge Discovery by Application of Rough Set Modeis. Instytut Podstaw Informatyki PAN, Raport 887, Warszawa 1999.
  • 293. Stepaniuk J., Honko Р.: Learning First-Order Rules: A Rough Set Approach Fundamenta Informaticae 61(2), 2004, s. 139-157.
  • 294. Stepaniuk J., Bazan J.G., Skowron A.: Modeling Сотріех Patterns by Information Systems. Fundamenta Informaticae 67, 2005, s. 203-217.
  • 295. Stepaniuk J.: Rough-granular computing in knowledge discovery and data mining. Studies in Computational Intelligence 152. Springer, Berlin-Heidelberg 2008.
  • 296. Sulzman J.N., Furnkranz J.: An Empirical Comparison of Probability Estimation Techniques for Probabilistic Rules. Lecture Notes in Computer Science 5808, 2009, s. 317-331.
  • 297. Suzuki E.: Negative Encoding Length as a Subjective Interestingness Measure for Groups of Rules. Proc. Of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, 2009, s. 220-231.
  • 298. Suzuki E.: Compresion-based Measures for Mining Interesting Rules. Lecture Notes in Artificial Intelligence 5579, 2009, s. 741-746.
  • 299. Synak Р.: Temporal Templates and Analysis of Time Related Data. Lecture Notes in artificial Intelligence 2005, 2001, s. 420-427.
  • 300. Szczęch I.: Multicriteria Attractiveness Evaluation of Decision and Association Rules. Transactions on Rough Sets X. LNCS 5656, 2009, s. 197-274.
  • 301. Ślęzak D.: Approximate reducts in decision tables. Proc. of the Sixth International Conference, Information Processing and Management of Uncertainty in Knowledge-Based Systems, 1996, s. 1159-1164.
  • 302. Ślęzak D., Wróblewski J.: Classification Algorithms Based on Linear Combinations of Features. Lecture Notes in Computer Science 1704, 1999, s. 548-553.
  • 303. Ślęzak D.: Appriximate Entropy Reducts. Fundamenta Informaticae 54(3-4), 2002, s. 365-390.
  • 304. Ślęzak D.: Rough Sets and Bayes Factor. Transactions on Rough Sets III. LNCS 3400, 2005, s. 202-229.
  • 305. Ślęzak D., Widz S.: Is It Important Which Rough-Set-Based Classifier Extraction and Voting Criteria Are Applied Together? Lecture Notes in Artificial Intelligence 6086, 2010, s. 187-196.
  • 306. Ślęzak D., Widz S.: Rough-Set-Inspired Feature Subset Selection, Classifier Construction, and Rule Aggregation. Lecture Notes in Computer Science 6954, 2011, s. 81-88.
  • 307. Tan Р., Kumar V., Srivastava J.: Selecting the right interestingness measure for association analysis. Information Sciences 29, 2004, s. 293-313.
  • 308. Tickle A.B., Andrews R., Golea M., Diederich J.: The truth will соте to light: Directions and challenges in extracting the knowledge embedded within trained artificial neural networks. IEEE Transactions on Neural Networks 9, 1998, s. 1057-1068.
  • 309. Todonwski L., Flach Р., Lavrac N.: Predictive performance of weighted relative accuracy. Lecture Notes in Computer Science 2258, 2000, s. 255+264.
  • 310. Towell G.G., Shavlik J.W.: Extracting Refined Rules from Knowledge-Based Neural Networks. Machine Leaming 13, 1993, s. 71-101.
  • 311. Tsai C.J., Lee CL, Yang W.P.: Mining decision rules on data streams in the presence of concept drifts. Expert Systems with Applications 36, 2009, s. 1164-1178.
  • 312. Tsumoto S., Tanaka H.: Automatem Discovery of Medical Expert System Rules form Clinical Databases based on Rough Sets. KDD-96 Proc. of the AA Al 1996, s. 63-69.
  • 313. Tsumoto S.: Automated Discovery of Positive and Negative Knowledge in Medical Databases. IEEE Engineering in Medicine and Biology 19(4), 2002, s. 56-62.
  • 314. Tsumoto S., Hirano S.: Visualization of Rules~s Similarity using Multidimensional Scaling. Proc. of the 3rd IEEE Int. Conference on Data Mining. IEEE, 2003, s. 339-346.
  • 315. Tsumoto S.: Mining diagnostic rules from clinical databases using rough sets and medical diagnostic model. Information Sciences 162, 2004, s. 65-80.
  • 316. Tsumoto S.: A new framework for incremental rule induction based on rough sets. IEEE International Conference on Granular Computing, IEEE Press, Califomia 2011, s. 681-686.
  • 317. Tzacheva A., Raś Z.: Action rules mining, International Journal of Intelligent Systems 20(7), 2005, s. 719-736.
  • 318. Ulutasdemir N., Dagli O.: Evaluation of risk of death in hepatitis by rule induction algorithms. Scientific Research and Essays 5(20), 2010, s. 3059-3062.
  • 319. Vaillant В., Lenca Р., Lallich S.: A clustering of interestingness measures. Lecture notes in Artificial Intelligence 3245, 2004, s. 290-297.
  • 320. van Aswegen G: Routine seismic hazard assessment in some South African mines. Proc. of the sixth international symposium on rockburst and seismicity in mines. Australian Centre for Geomechanics, Nedlands 2005, s. 437-44.
  • 321. Vapnik V.N.: Statistical Learning Theory. John Wiley and Sons, New York 1998.
  • 322. Wakulicz-Deja A., Paszek Р.: Applying Rough Set Theory to Multi Stage Medical Diagnosing. Fundamenta Informaticae 54(4), 2003 str.387-408.
  • 323. Wakulicz-Deja A., Nowak A.: Form Information Systems to Decision Support Systems. Lecture Notes in Computer Science 5390, 2008, s. 379-404.
  • 324. Wakulicz-Deja A., Przybyła-Kasperek M.: Multi-Agent Decision Taking System. Fundamenta Informaticae 101(1-2), 2010, s. 125-141.
  • 325. Wakulicz-Deja A., Przybyła-Kasperek M.: Application of the Method of Editing and Condensing in the Process of Global Decision-making. Fundamenta Informaticae 106(1), 201 l,s. 93-117.
  • 326. Wakulicz-Deja A., Brzezińska-Nowak A., Jach Т.: lnference Processes in Decision Support Systems with Incomplete Knowledge. Lecture Notes in Computer Science 6954, 201 l,s. 616-625.
  • 327. Webb G.I.: Further experimental evidence against the utility of Occam's razor. Journal of Artificial Intelligence Research 4, 1996, s. 397-417.
  • 328. Webb G.I., Zhang S.: K-optimal rule discovery. Data Mining and Knowledge Discovery 10, 2005, s. 39-79.
  • 329. Webb G.I.: Discovering significant patterns. Machine Learning 68(1), 2007, s. 1-33.
  • 330. Weiss S.M., Indurkhya N.: Rule-based machine learning methods for functional prediction. Journal of Artificial Intelligence Research 3, 1995, s. 383-403.
  • 331. Winiarko E., Roddick J.F.: ARMADA - An algorithm for discovering richer relative temporal association rules form interval-based data. Journal of Data and Knowledge Engineering 63(1), 2007, s. 76-90.
  • 332. Winston P.H.: Artificial Intelligence. Addison-Wesley, Cambridge 1992.
  • 333. Witten I.H., Frank E.: Data mining: practical machine leaming tools and techniques. Morgan Kaufmann, 2011.
  • 334. Wohlrab L., Fiirnkranz J.: A review and comparison of strategies for handling missing values in separate-and-conquer mle leraming. Journal of Intelligent Information Systems 36(1), 201 l,s. 73-98.
  • 335. Wojna A.: Constraint based incremental leaming of classification rules. Lecture Notes in Artificial Intelligence 2005,2001, s. 428-435.
  • 336. Wojtusiak J., Michalski R.S., Kaufman K, Pietrzykowski J.: The AQ21 Natural Induction Program for Pattern Discovery: Initial Version and its Novel Features. 18th IEEE International Conference on Tools with Artificial Intelligence, IEEE Computer Society 2006, s. 523-526.
  • 337. Wolpert D.H.: The lack of a priori distinctions between leaming algorithms. Neural Computation 8(7), 1996, s. 1341-1390.
  • 338. Wnek J., Michalski R.S: Hypothesis-Driven Constructive Induction in AQ17-HCI: A Method and Experiments. Machine Leaming 14(1), 1994, s. 139-168.
  • 339. Wu X., Kumar V., Quinlan J.R., et al.: Top 10 algorithms in data mining. Knowledge and Information Systems 14(1), 2008, s. 1-37.
  • 340. Yao Y.Y., Zhong N.: An analysis of quantitative measures associated with rules. Lecture Notes in Artificial Intelligence 1574, 1999, s. 479-488.
  • 341. Yao Y.Y.: Information-theoretic measures for knowledge discovery and data mining. Entropy Measures, Maximum Entropy and Emerging Applications. Studies in Fuzziness and Soft Computing. Springer-Verlag, Heidelberg 2003, s. 115-136.
  • 342. Yao Y., Zhou В.: Micro and macro evaluation of classification rules. Proc. 7th IEEE Int. Conf. on Cognitive Informatics, 2008, s. 441-448.
  • 343. Yao Y., Zhao Y., Wang J.: On reduct construction algorithms. Lecture Notes in Computer Science 5150,2008, s. 100-117.
  • 344. Zhao Y., Hang C, Cao L.: Post-Mining of Association rules: Techniques for Effective Knowledge Extraction. Information Sciences Reference IGI Global, Hershey 2009.
  • 345. Zhu H., Huang W., Zheng H.: Method for discovering actionable mle. Proc. of the Fourth International Conference on Fuzzy Systems and Knowledge Discovery, 2007.
  • 346. Ziarko W.: Variable precision rough sets model. Journal of Computer and Systems Sciences 461, 1993, s. 39-59.
  • 347. Zupan В., Demsar J., Kattan M.W., Beck R., Bratko I.: Machine Leaming for Survival Analysis: A Case Study on Recurrence of Prostate Cancer. Lecture Notes in Artificial Intelligence 1620, 1999, s. 346-355.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL1-0026-0015
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.