PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Turbulent unsteady flow profiles over an adverse slope

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
When an unsteady free surface flow encounters an adverse slope, it results in a decelerating flow up th e adverse slope. The time dependent turbulent flow is treated here by appropriately reducing the two- dimensional Reynolds averaged Navier–Stokes equation along with the equation of continuity considering turbulence closure. With suitable choice of parameters, the resulting differential equations are numerically solved to compute free surface and st reamwise velocity profiles with time. It is found that initially the advancing free surface is convex upwards for a short time, followed by a jump of the free surface with a negative streamwise velocity that is a backwater rolling breaker due to deceleration of flow. At later time, however, the velocity becomes posi- tive, that is, the breakers roll forward. This dual feature of motion, that is a surge followed by rolling breakers, is repeated for sometime before the jumps stop. The theoretical analysis presented here is motivated by tidal bores propagating upstream in an estuarine river.
Czasopismo
Rocznik
Strony
84--97
Opis fizyczny
Bibliogr. 30 poz.
Twórcy
autor
autor
  • Centre for Theoretical Studies, Indian Institute of Technology, Kharagpur, West Bengal, India, sujitbose@yahoo.com
Bibliografia
  • Abbott, H.B. (1979), Computational Hydraulics: Elements of the Theory of Free Surface Flows, Pitman, London.
  • Basco, D.R. (1987), Computation of rapidly varied, unsteady, free-surface flow, Water-Resources Investigations Report 83-4284, U.S. Geological Survey, Reston, Virginia, USA.
  • Benqué, J.P., J.A. Cunge, J. Feuillet, A. Hauguel, and F.M. Holly, Jr. (1982), New method for tidal current computation, J. Waterw. Port Coast. Ocean Div. ASCE 108, 3, 396-417.
  • Bose, S.K. (2009), Numeric Computing in Fortran, Narosa, New Delhi.
  • Bose, S.K., and S. Dey (2007), Curvilinear flow profiles based on Reynolds averaging, J. Hydraul. Eng. 133, 9, 1074-1079, DOI: 10.1061/(ASCE) 0733-9429(2007)133:9(1074).
  • Bose, S.K., and S. Dey (2009), Reynolds averaged theory of turbulent shear floks over undulating beds and formation of sand waves, Phys. Rev. E 80, 3, 036304, DOI: 10.1103/PhysRevE.80.036304.
  • Casulli, V., and R.T. Cheng (1992), Semi-implicit finite difference methods for three-dimensional shallow water flow, Int. J. Num. Meth. Fluids 15, 6, 629-648, DOI: 10.1002/fld.1650150602.
  • Casulli, V., and G.S. Stelling (1998), Numerical simulation of 3D quasi-hydrostatic, free-surface flows, J. Hydraul. Eng. 124, 7, 678-686, DOI: 10.1061/(ASCE)0733-9429(1998)124:7(678).
  • Chaudhry, M.H. (1994), Open Channel Flow, Prentice-Hall of India, New Delhi.
  • Chen, X.J. (2003), A free-surface correction method for simulating shallow water flows, J. Comput. Phys. 189, 2, 557-578, DOI: 10.1016/S0021-9991(03)00234-1.
  • Chow, V.T. (1959), Open Channel Hydraulics, McGraw-Hill, New York, 680 pp.
  • Cunge, J.A., F.M. Holly, and A. Verwey (1980), Practical Aspects of Computational River Hydraulics, Pitman, London, 420 pp.
  • Dey, S. (1998), End depth in circular channels, J. Hydraul. Eng. 124, 8, 856-863, DOI: 10.1061/(ASCE)0733-9429(1998)124:8(856).
  • Dey, S. (2002), Free overfall in open channels: State-of-the-art review, Flow Meas. Instrum. 13, 5-6, 247-264, DOI: 10.1016/S0955-5986(02)00055-9.
  • Dey, S., and M.F. Lambert (2005), Reynolds stress and bed shear in non uniform unsteady open-channel flow, J. Hydraul. Eng. 131, 7, 610-614, DOI: 10.1061/(ASCE)0733-9429(2005)131:7(610).
  • Fennema, R.J., and M.H. Chaudhry (1990), Explicit methods for 2-D transient freesurface flows, J. Hydraul. Eng. 116, 8, 1013-1034, DOI: 10.1061/(ASCE)0733-9429(1990)116:8(1013).
  • Garcia-Navarro, P., F. Alcrudo, and J.M. Savirón (1992), 1-D open-channel flow simulation using TVD-McCormack scheme, J. Hydraul. Eng. 118, 10, 1359-1372, DOI: 10.1061/(ASCE)0733-9429(1992)118:10(1359).
  • Garcia-Navarro, P., M.E. Hubbard, and A. Priestley (1995), Accurate flux vector splitting for shocks and shear layers, J. Comput. Phys. 121, 1, 79-93, DOI: 10.1006/jcph.1995.1180.
  • Gill, M.A. (1976), Exact solution of gradually varied flow, J. Hydraul. Div. ASCE 102, 9, 1353-1364.
  • Henderson, F.M. (1966), Open Channel Flow, MacMillan, New York.
  • Katopodes, N.D. (1984), A dissipative Galerkin scheme for open-channel flow, J. Hydraul. Eng. ASCE 110, 4, 450-466, DOI: 10.1061/(ASCE)0733-9429(1984)110: 4(450).
  • Kumar, A. (1978), Integral solutions of the gradually varied equation for rectangular and triangular channels, ICE Proc. 65, 3, 509-515, DOI: 10.1680/iicep.1978.2802.
  • Kumar, A. (1979), Gradually varied surface profiles in horizontal and adversely sloping channels, ICE Proc. 67, 2, 435-452, DOI: 10.1680/iicep.1979.2467.
  • Molinas, A., and C.T. Yang (1985), Generalised water surface profile computations, J. Hydraul. Eng. 111, 3, 381-397, DOI: 10.1061/(ASCE)0733-9429(1985)111:3(381).
  • Namin, M.M., B. Lin, and R.A. Falconer (2001), An implicit numerical algorithm for solving non-hydrostatic free-surface flow problems, Int. J. Num. Meth. Fluids 35, 3, 341-356, DOI: 10.1002/1097-0363(20010215)35:3<341::AIDFLD96>3.0.CO;2-R.
  • Prasad, R. (1970), Numerical method of computing flow profiles, J. Hydraul. Div. 96, 1, 75-86.
  • Quecedo, M., and M. Pastor (2003), Finite element modelling of free surface floks on inclined and curved beds, J. Comput. Phys. 189, 1, 45-62, DOI:10.1016/S0021-9991(03)00200-6.
  • Schlichting, H., and K. Gersten (2000), Boundary Layer Theory, 8 ed., Springer-Verlag, Berlin.
  • Strelkoff, T. (1969), One-dimensional equations of open-channel flow, J. Hydraul. Div. 95, 3, 861-866.
  • Yen, B.C. (1973), Open-channel flow equations revisited, J. Eng. Mech. Div. 99, 5, 979-1009.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL1-0025-0011
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.