PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of earthquake activity along the Serghaya fault, Syria, from instrumental seismic data

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This is a tentative study in order to characterize and identify the Serghaya fault in Syria through an analysis of its instrumentally observed earthquake activity for the period of 1 995-2009. Different approaches are used to evaluate a - and b -values of the Gutenberg–Richter relation. It has been found that the computed b -values (around 1.5) are bigger than usually expected, which could be related either to incompleteness of earthquake catalogue or to invalidity of the Gutenberg–Richter model in the case of Serghaya fault. Based on several explanations of high b-values, existing in the literature, it can be inferred that the events recorded on the Serghaya fault occurred at small depths in the heterogeneous milieus under low stresses. A relative seismic quiescence from 1900 up to now is observed, whereas the biggest earthquake recorded during the study period does not exceed magnitude 3.9. Such quiescence does not reflect accurately an earthquake potential of the Serghaya fault and can probably indicate a large-magnitude earthquake occurrence in near future. The established earthquake catalogue must be necessarily completed in order to deeper characterize the real behavior of the Serghaya fault. Such a characterization, accompanied with seismic activity evaluation, could be used in the assessment of seismic hazard.
Czasopismo
Rocznik
Strony
37--59
Opis fizyczny
Bibliogr. 60 poz.
Twórcy
autor
Bibliografia
  • Abdul-Wahed, M.K., and I. Al-Tahhan (2010), Preliminary outlining of the seismological active zones in Syria, Ann. Geophys. 53, 4, 1-9, DOI: 10.4401/ag-4683.
  • Abdul-Wahed, M.K., J. Asfahani, and I. Al-Tahhan (2011), A combined methodology of multiplet and composite focal mechanism techniques for identifying seismologically active zones in Syria, Acta Geophys. 59, 5, 967-992, DOI: 10.2478/s11600-011-0024-2.
  • Aki, K. (1965), Maximum likelihood estimate of b in the formula log N = a – bM and its confidence limits, Bull. Earthq. Res. Inst. Univ. Tokyo 43, 2, 237- 239.
  • Al-Khoubbi, I., S. Halchuk, and J. Adams (2001), Seismic hazard maps for Syria and 2%/50 year values for selected Syrian cities. In: Proc. Fall Meeting 2001, American Geophysical Union, abstr. #S52C-0647.
  • Asfahani, J., and R. Darawcheh (2010), Statistical analysis of the earthquakes between 1900-2007 in and around Syria: Probability of a large earthquake occurrence, Internal report, Atomic Energy Commission, Damascus, Syria.
  • Ayele, A., and O. Kulhanek (1997), Spatial and temporal variations of seismicity in the Horn of Africa from 1960 to 1993, Geophys. J. Int. 130, 3, 805-810, DOI: 10.1111/j.1365-246X.1997.tb01875.x.
  • Baer, G., D. Sandwell, S. Williams, Y. Bock, and G. Shamir (1999), Coseismic deformation associated with the November 1995, Mw = 7.1 Nuweiba earthquake, Gulf of Elat (Aqaba), detected by synthetic aperture radar interferometry, J. Geophys. Res. 104, B11, 25221-25232, DOI: 10.1029/1999JB900216.
  • Ben-Zion, Y. (1996), Stress, slip, and earthquakes in models of complex single-fault systems incorporating brittle and creep deformations, J. Geophys. Res. 101, B3, 5677-5706, DOI: 10.1029/95JB03534.
  • Ben-Zion, Y., K. Dahmen, V. Lyakhovsky, D. Ertas, and A. Agnon (1999), Selfdriven mode switching of earthquake activity on a fault system, Earth Planet. Sci. Lett. 172, 1-2, 11-21, DOI: 10.1016/S0012-821X(99)00187-9.
  • Brew, G., M. Barazangi, A.K. Al-Maleh, and T. Sawaf (2001), Tectonic and geologic evolution of Syria, GeoArabia 6, 4, 573-616.
  • Bulletin of the Atomic Energy Commission of Syria (AECS) (1990-2003), Annual seismological bulletin, Internal report, Atomic Energy Commission of Syria, Damascus, Syria.
  • Bulletin of the Lebanon National Seismological Network (GRAL, Geophysical Research Arrays of Lebanon) (1995-2009), National Centre for Geophysical Research, the National Council for Scientific Research (CNRS), Lebanon.
  • Bulletin of the Syrian National Seismological Network (SNSN) (1995-2009), National Earthquake Center, Ministry of Petroleum and Mineral Resources, Syrian Arab Republic.
  • Gerstenberger, M., S. Wiemer, and D. Giardini (2001), A systematic test of the hypothesis that the b value varies with depth in California, Geophys. Res. Lett. 28, 1, 57-60, DOI: 10.1029/2000GL012026.
  • Gomez, F., M. Meghraoui, A.N. Darkal, R. Sbeinati, R. Darawcheh, C. Tabet, M. Khawlie, M. Charabe, K. Khair, and M. Barazangi (2001), Coseismic displacements along the Serghaya Fault: an active branch of the Dead Sea Fault System in Syria and Lebanon, J. Geol. Soc. 158, 3, 405-408, DOI: 10.1144/jgs.158.3.405.
  • Gomez, F., M. Meghraoui, A.N. Darkal, F. Hijazi, M. Mouty, Y. Suleiman, R. Sbeinati, R. Darawcheh, R. Al-Ghazzi, and M. Barazangi (2003), Holocene faulting and earthquake recurrence along the Serghaya branch of the Dead Sea fault system in Syria and Lebanon, Geophys. J. Int. 153, 3, 658-674, DOI: 10.1046/j.1365-246X.2003.01933.x.
  • Gomez, F., M. Khawlie, C. Tabet, A.N. Darkal, K. Khair, and M. Barazangi (2006), Late Cenozoic uplift along the northern Dead Sea transform in Lebanon and Syria, Earth Planet. Sci. Lett. 241, 3-4, 913-931, DOI: 10.1016/j.epsl.2005.10.029.
  • Gutenberg, B., and C.F. Richter (1944), Frequency of earthquakes in California, Bull. Seismol. Soc. Am. 34, 4, 185-188.
  • Hariri, A. (1991), Seismotectonic study, seismic hazard assessment and zonation of the Syrian Arab Republic, M.Sc. Thesis, Institute of Earthquake Engineering and Engineering Seismology, University “Kiril and Metodij”, Skopje.
  • Havskov, J., and L. Ottemöller (2009), Seisan: The earthquake analysis software, Version 8.2.1, Department of Earth Science, University of Bergen, Bergen, Norway.
  • Kagan, Y.Y. (1994), Observational evidence for earthquakes as a nonlinear dynamic process, Physica D 77, 1-3, 160-192, DOI: 10.1016/0167-2789(94)90132-5.
  • Kagan, Y.Y. (1996), Comment on “The Gutenberg–Richter or characteristic earthquake distribution, which is it?” by Steven G. Wesnousky, Bull. Seismol. Soc. Am. 86, 1A, 274-285.
  • Kagan, Y.Y. (1997), Seismic moment-frequency relation for shallow earthquakes: Regional comparison, J. Geophys. Res. 102, B2, 2835-2852, DOI: 10.1029/96JB03386.
  • Kagan, Y.Y. (1999), Universality of the seismic moment-frequency relation, Pure Appl. Geophys. 155, 2-4, 537-573, DOI: 10.1007/s000240050277.
  • Kijko, A. (1983), A modified form of the first Gumbel distribution: model for the occurrence of large earthquakes. Part II: Estimation of parameters, Acta Geophys. Pol. 31, 2, 147-159.
  • Kijko, A. (2004), Estimation of the maximum earthquake magnitude, mmax, Pure Appl. Geophys. 161, 8, 1655-1681, DOI: 10.1007/s00024-004-2531-4.
  • Kijko, A. (2007), New developments in probabilistic seismic hazard analysis. In: Proc. 4th Gulf Seismic Forum, 24-27 March 2007, Kuwait, Kuwait Institute for Scientific Research.
  • Kijko, A., and G. Graham (1998), Parametric-historic procedure for probabilistic seismic hazard analysis. Part I: Estimation of maximum regional magnitude mmax, Pure Appl. Geophys. 152, 3, 413-442, DOI: 10.1007/s000240050161.
  • Kijko, A., and M.A. Sellevoll (1989), Estimation of earthquake hazard parameters from incomplete data files. Part I. Utilization of extreme and complete catalogs with different threshold magnitudes, Bull. Seismol. Soc. Am. 79, 3, 645-654.
  • Kijko, A., and M.A. Sellevoll (1992), Estimation of earthquake hazard parameters from incomplete data files. Part II. Incorporation of magnitude heterogeneity, Bull. Seismol. Soc. Am. 82, 1, 120-134.
  • Klinger, Y., L. Rivera, H. Haessler, and J.-C. Maurin (1999), Active faulting in the Gulf of Aqaba: New knowledge from the Mw 7.3 earthquake of 22 November 1995, Bull. Seismol. Soc. Am. 89, 4, 1025-1036.
  • Knopoff, L. (2000), The magnitude distribution of declustered earthquakes in Southern California, Proc. Natl. Acad. Sci. USA 97, 22, 11880-11884, DOI: 10.1073/pnas.190241297.
  • Liu, J., K. Sieh, and E. Hauksson (2003), A structural interpretation of the aftershock “Cloud” of the 1992 Mw 7.3 Landers earthquake, Bull. Seismol. Soc. Am. 93, 3, 1333-1344, DOI: 10.1785/0120020060.
  • Meghraoui, M., F. Gomez, R. Sbeinati, J. van der Woerd, M. Mouty, A.N. Darkal, Y. Radwan, I. Layyous, H. Al Najjar, R. Darawcheh, F Hijazi, R. Al-Ghazzi, and M. Barazangi (2003), Evidence for 830 years of seismic quiescence from palaeoseismology, archeoseismology and historical seismicity along the Dead Sea fault in Syria, Earth Planet. Sci. Lett. 210, 1-2, 35-52, DOI: 10.1016/S0012-821X(03)00144-4.
  • Mogi, K. (1962), Magnitude-frequency relation for elastic shocks accompanying fractures of various materials and some related problems in earthquakes, Bull. Earthq. Res. Inst. Univ. Tokyo 40, 4, 831-853.
  • Mohamad, R., A.N. Darkal, D. Seber, E. Sandvol, F. Gomez, and M. Barazangi (2000), Remote earthquake triggering along the Dead Sea fault in Syria following the 1995 Gulf of Aqaba Earthquake (Ms = 7.3), Seismol. Res. Lett. 71, 1, 47-52, DOI: 10.1785/gssrl.71.1.47.
  • Monterroso, D.A. (2003), Seismic precursory potential of temporal variation of b-value: five case studies in Central America. In: Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, No. 897, 17 pp.
  • Monterroso, D.A., and O. Kulhanek (2003), Spatial variations of b-values in the subduction zone of Central America, Geofis. Int. 42, 4, 575-587.
  • Nuannin, P., O. Kulhanek, and L. Persson (2005), Spatial and temporal b value anomalies preceding the devastating off coast of NW Sumatra earthquake of December 26, 2004, Geophys. Res. Lett. 32, L11307, DOI: 10.1029/2005GL022679.
  • Sbeinati, M.R., R. Darawcheh, and M. Mouty (2005), The historical earthquakes of Syria: an analysis of large and moderate earthquakes from 1365 B.C. to 1900 A.D., Ann. Geophys. 48, 3, 347-435.
  • Scholz, C.H. (1968), The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes, Bull. Seismol. Soc. Am. 58, 1, 399-415.
  • Schorlemmer, D., and S. Wiemer (2005), Earth science: Microseismicity data forecast rupture area, Nature 434, 7037, 1086, DOI: 10.1038/4341086a.
  • Schorlemmer, D., S. Wiemer, and M. Wyss (2005), Variations in earthquake-size distribution across different stress regimes, Nature 437, 7058, 539-542, DOI: 10.1038/nature04094.
  • Schwartz, D.P., and K.J. Coppersmith (1984), Fault behavior and characteristic earthquakes: examples from Wasatch and San Andreas fault zones, J. Geophys. Res. 89, B7, 5681-5698, DOI: 10.1029/JB089iB07p05681.
  • Stirling, M.W., S.G. Wesnousky, and K. Shimazaki (1996), Fault trace complexity, cumulative slip, and the shape of the magnitude-frequency distribution for strike-slip faults: a global survey, Geophys. J. Int. 124, 3, 833-868, DOI:10.1111/j.1365-246X.1996.tb05641.x.
  • Suyehiro, S., T. Asada, and M. Ohtake (1964), Foreshocks and aftershocks accompanying a perceptible earthquake in central Japan: On the peculiar nature of foreshocks, Pap. Meteorol. Geophys. 15, 1, 71-88.
  • Utsu, T. (1965), A method for determining the value of b in the formula log N = a – bM showing the magnitude-frequency relation for earthquakes, Geophys. Bull. Hokkaido Univ. 13, 99-103 (in Japanese with English abstract).
  • Utsu, T. (1966), A statistical significance test of the difference in b-value between two earthquake groups, J. Phys. Earth 14, 2, 37-40, DOI: 10.4294/jpe1952.14.37.
  • Utsu, T., Y. Ogata, and R.S. Matsu’ura (1995), The centenary of the Omori formula for a decay law of aftershock activity, J. Phys. Earth 43, 1, 1-33, DOI:10.4294/jpe1952.43.1.
  • Warren, N.W., and G.V. Latham (1970), An experimental study of thermally induced microfracturing and its relation to volcanic seismicity, J. Geophys. Res. 75, 23, 4455-4464, DOI: 10.1029/JB075i023p04455.
  • Weichert, D.H. (1980), Estimation of the earthquake recurrence parameters for unequal observation periods for different magnitudes, Bull. Seismol. Soc. Am. 70, 4, 1337-1346.
  • Wesnousky, S.G. (1994), The Gutenberg–Richter or characteristic earthquake distribution, which is it?, Bull. Seismol. Soc. Am. 84, 6, 1940-1959.
  • Wesnousky, S.G. (1996), Reply to Yan Kagan’s comment on “The Gutenberg–Richter or characteristic earthquake distribution, which is it?”, Bull. Seismol. Soc. Am. 86, 1A, 286-291.
  • Wesnousky, S.G. (1999), Crustal deformation processes and the stability of the Gutenberg–Richter relationship, Bull. Seismol. Soc. Am. 89, 4, 1131-1137.
  • Wesnousky, S.G., C.H. Scholz, K. Shimazaki, and T. Matsuda (1983), Earthquake frequency distribution and the mechanics of faulting, J. Geophys. Res. 88, B11, 9331-9340, DOI: 10.1029/JB088iB11p09331.
  • Wiemer, S., and J. Benoit (1996), Mapping the b-value anomaly at 100 km depth in the Alaska and New Zealand subduction zones, Geophys. Res. Lett. 23, 13, 1557-1560, DOI: 10.1029/96GL01233.
  • Wiemer, S., S.R. McNutt, and M. Wyss (1998), Temporal and three-dimensional spatial analyses of the frequency-magnitude distribution near Long Valley Caldera, California, Geophys. J. Int. 134, 2, 409-421, DOI: 10.1046/j.1365-246x.1998.00561.x.
  • Wyss, M. (1973), Towards a physical understanding of the earthquake frequency distribution, Geophys. J. Roy. Astr. Soc. 31, 4, 341-359, DOI: 10.1111/j.1365-246X.1973.tb06506.x.
  • Wyss, M., D. Schorlemmer, and S. Wiemer (2000), Mapping asperities by minima of local recurrence time: San Jacinto-Elsinore fault zones, J. Geophys. Res. 105, B4, 7829-7844, DOI: 10.1029/1999JB900347.
  • Youngs, R.R., and K.J. Coppersmith (1985), Implications of fault slip rates and earthquake recurrence models to probabilistic seismic hazard estimates, Bull. Seismol. Soc. Am. 75, 4, 939-964.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL1-0025-0009
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.