PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On regularized time varying gravity field models based on GRACE data and their comparison with hydrological models

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Determination of spherical harmonic coefficients of the Earth’s gravity field is often an ill-posed problem and leads to solving an ill-conditioned system of equations. Inversion of such a system is critical, as small errors of data will yield large variations in the result. Regularization is a method to solve such an unstable system of equations. In this study, direct methods of Tikhonov, truncated and damped singular value decomposition and iterative methods of v, algebraic reconstruction technique, range restricted generalized minimum residual and conjugate gradient are used to solve the normal equations constructed based on range rate data of the gravity field and climate experiment (GRACE) for specific periods. Numerical studies show that the Tikhonov regularization and damped singular value decomposition methods for which the regularization parameter is estimated using quasioptimal criterion deliver the smoothest solutions. Each regularized solution is compared to the global land data assimilation system (GLDAS) hydrological model. The Tikhonov regularization with L-curve delivers a solution with high correlation with this model and a relatively small standard deviation over oceans. Among iterative methods, conjugate gradient is the most suited one for the same reasons and it has the shortest computation time.
Czasopismo
Rocznik
Strony
1--17
Opis fizyczny
Bibliogr. 33 poz.
Twórcy
autor
autor
autor
  • Division of Geodesy and Geoinformatics, Royal Institute of Technology (KTH), Stockholm, Sweden; Department of Geodesy, K.N.Toosi University of Technology, Tehran, Iran, eshagh@kth.se
Bibliografia
  • Aster, R.C., B. Borchers, and C.H. Thurber (2005), Parameter Estimation and Inverse Problems, Elsevier, New York.
  • Bruinsma, S., J.M. Lemoine, R. Biancale, and N. Valés (2010), CNES/GRGS 10-day gravity field models (release 2) and their evaluation, Adv. Space Res. 45, 4, 587-601, DOI: 10.1016/j.asr.2009.10.012.
  • Carrére, L., and F. Lyard (2003), Modeling the barotropic response of the global ocean to atmospheric wind and pressure forcing – comparisons with observations, Geophys. Res. Lett. 30, 6, 1275, DOI: 10.1029/2002GL016473.
  • dos Santos, M.C. (1995), Real-time orbit improvement for GPS satellites, Ph.D. Thesis, Report 178, Department of Geodesy and Geomatics Engineering, University of New Brunswick, Canada.
  • Eshagh, M. (2010), Inversion of gravity gradients for determination of gravity anomaly in the polar gaps, Acta Geod. Geophys. Hung. 45, 4, 440-451, DOI:10.1556/AGeod.45.2010.4.4.
  • Eshagh, M. (2011), Sequential Tikhonov regularization: an alternative way for inverting satellite gradiometric data, ZfV 136, 2, 113-121.
  • Eshagh, M., and L.E. Sjöberg (2011), Determination of gravity anomaly at sea level from inversion of satellite gravity gradiometric data, J. Geodyn. 51, 5, 366-377, DOI: 10.1016/j.jog.2010.11.001.
  • Eshagh, M., M. Abdollahzadeh, and M. Najafi-Alamdari (2008), Simplification of geopotential perturbing force acting on a satellite, Artif. Satel. 43, 2, 45-64, DOI: 10.2478/v10018-009-0006-7.
  • Hansen, P.C. (2007), Regularization Tools version 4.0 for Matlab 7.3, Numer. Algorithms 46, 2, 189-194, DOI: 10.1007/s11075-007-9136-9.
  • Janak, J., Y. Fukuda, and P. Xu (2009), Application of GOCE data for regional gravity field modeling, Earth Planets Space 61, 7, 835-843.
  • Janssen, P.A.E.M., A.C.M. Beljaars, A. Simmons, and P. Viterbo (1992), The determination of the surface stress in an atmospheric model, Mon. Weather Rev. 120, 2977-2985, DOI: 10.1175/1520-0493(1992)120<2977:TDOTSS>2.0.CO;2.
  • Jekeli, C. (1981), Alternative methods to smooth the Earth’s gravity field, Dept. Of Geodetic Science and Surveying, Ohio State University, Columbus, USA, Rep. 327, 48 pp.
  • Kilmer, M.E., and D.P. O’Leary (2001), Choosing regularization parameters in iterativa methods for ill-posed problems, SIAM, J. Matrix Anal. Appl. 22, 4, 1204-1221, DOI: 10.1137/S0895479899345960.
  • Koch, K.-R., and J. Kusche (2002), Regularization of geopotential determination from satellite data by variance components, J. Geod. 76, 5, 259-268, DOI:10.1007/s00190-002-0245-x.
  • Kotsakis, C. (2007), A covariance-adaptive approach for regularized inversion in linear models, Geophys. J. Int. 171, 2, 509-522, DOI: 10.1111/j.1365-246X.2007. 03534.x.
  • Lemoine, J.M., S. Bruinsma, S. Loyer, R. Biancale, J.C. Marty, F. Perosanz, and G. Balmino (2007), Temporal gravity field models inferred from GRACE data, Adv. Space Res. 39, 1620-1629, DOI: 10.1016/j.asr.2007.03.062"10.1016/j.asr.2007.03.062.
  • Maitre, H., and A.J. Levy (1983), The use of normal equations for superresolution problems, J. Opt. 14, 4, 205-207, DOI: 10.1088/0150-536X/14/4/005"10.1088/0150-536X/14/4/005.
  • Parrot, D. (1989), Short arc orbit improvement for GPS satellites, M.Sc. Thesis, Department of Surveying Engineering, University of New Brunswick, Canada, Tech. Rep. 143.
  • Reed, G.B. (1973), Application of kinematical geodesy for determining the shortswavelength component of the gravity field by satellite gradiometry, Report 201, Department of Geodetic Science, Ohio State University, Columbus, USA.
  • Rodell, M., P.R. Houser, U. Jambor, J. Gottschalck, K. Mitchell, C.-J. Meng, K. Arsenault, B. Cosgrove, J. Radakovich, M. Bosilovich, J.K. Entin, J.P. Walker, D. Lohmann, and D. Toll (2004), The Global Land Data Assimilation System, Bull. Am. Meteorol. Soc. 85, 3, 381-394, DOI: 10.1175/BAMS-85-3-381.
  • Rudolph, S., J. Kusche, and K.H. Ilk (2002), Investigations on the polar gap problem in ESA’s gravity field and steady-state ocean circulation explorer mission (GOCE), J. Geodyn. 33, 1-2, 65-74, DOI: 10.1016/S0264-3707(01)00055-2.
  • Rummel, R. (1975), Downward continuation of gravity information from satellite-tosatellite tracking or satellite gradiometry in local areas, Report 221, Department of Geodetic Science, Ohio State University, Columbus.
  • Somodi, B., and L. Foldvary (2011), Application of numerical integration techniques for orbit determination of state-of-the-art LEO satellites, Period. Polytech. Civil Eng. 55, 2, 99-106, DOI: 10.3311/pp.ci.2011-2.02.
  • Tapley, B., J. Ries, S. Bettadpur, D. Chambers, M. Cheng, F. Condi, B. Gunter, Z. Kang, P. Nagel, R. Pastor, T. Pekker, S. Poole, and F. Wang (2005), GGM02 – An improved Earth gravity field model from GRACE, J. Geod. 79, 8, 467-478, DOI: 10.1007/s00190-005-0480-z.
  • Tscherning, C.C. (1988), A study of satellite altitude influence on the sensitivity of gravity gradiometer measurements, DGK, Reihe B, Heft 287 (Festschrift R. Sigl), 218-223.
  • Tscherning, C.C. (1989), A local study of the influence of sampling rate, number of observed components and instrument noise on 1 deg. mean geoid and gravity anomalies determined from satellite gravity gradiometer measurements, Ric. Geod. Topogr. Fotogram. 5, 139-146.
  • Tscherning, C.C., R. Forsberg, and M. Vermeer (1990), Methods for the regional gravity field modelling from SST and SGG data, Reports of the Finnish Geodetic Institute, No. 90:2, Helsinki.
  • Visser, P. (1992), The use of satellites in gravity field determination and adjustment, Ph.D. Thesis, Technical University of Delft.
  • Werner, M. (2001), Shuttle Radar Topography Mission (SRTM), Mission overview, Frequenz 55, 34, 75-79, DOI: 10.1515/FREQ.2001.55.3-4.75.
  • Xu, P. (1992), Determination of surface gravity anomalies using gradiometric observables, Geophys. J. Int. 110, 2, 321-332, DOI: 10.1111/j.1365-246X.1992.tb00877.x.
  • Xu, P. (1998), Truncated SVD methods for discrete linear ill-posed problems, Geophys. J. Int. 135, 2, 505-514, DOI: 10.1046/j.1365-246X.1998.00652.x.
  • Xu, P. (2009a), Iterative generalized cross-validation for fusing heteroscedastic data of inverse ill-posed problems, Geophys. J. Int. 179, 1, 182-200, DOI: 10.1111/j.1365-246X.2009.04280.x.
  • Xu, P. (2009b), Zero initial partial derivatives of satellite orbits with respect to force parameters violate the physics of motion of celestial bodies, Sci. China Ser. D: Earth Sci. 52, 4, 562-566, DOI: 10.1007/s11430-009-0049-4.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL1-0025-0006
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.