PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermal history and large scale differentiation of the Saturn’s satellite Rhea

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Thermal history of Rhea from the beginning of accretion is investigated. We developed a numerical model of convection combined with the parameterized theory. Large scale melting of the satellite’s matter and gravitational differentiation of silicates from ices are included. The results are confronted with observational data from Cassini spacecraft that indicate minor differentiation of the satellite’s interior. We suggest that partial differentiation of the satellite’s interior is accompanied (or followed) by the process of light fraction uprising to the surface. The calculation indicates that the partial differentiation of the matter of the satellite’s interior is possible only for narrow range of parameters. In particular, we found that the time from the formation of CAI (calciumaluminum rich inclusions in chondrites) to the end of accretion of Rhea is in the range of 3-4 My.
Czasopismo
Rocznik
Strony
1192--1212
Opis fizyczny
Bibliogr. 39 poz.
Twórcy
  • Institute of Geophysics, University of Warsaw, Warszawa, Poland, lczecho@op.pl
Bibliografia
  • Castillo-Rogez, J. ( 2006), Internal structure of Rhea, J. Geophys. Res. 111, E11005, DOI: 10.1029/2004JE002379.
  • Castillo-Rogez, J., D. Matson, C. Sotin, T. Johnson, J. Lunine, and P. Thomas (2007), Iapetus’ geophysics: Rotation rate, shape, and equatorial ridge, Icarus 190, 1, 179-202, DOI: 10.1016/j.icarus.2007.02.018.
  • Christensen, U. (1984), Convection with pressure and temperature-dependent non-Newtonian rheology, Geophys. J. Roy. Astron. Soc. 77, 2, 343-384, DOI: 10.1111/j.1365-246X.1984.tb01939.x.
  • Czechowski, L. (1993), Theoretical approach to mantle convection. In: R. Teisseyre, L. Czechowski, and J. Leliwa-Kopystyński (eds.), Dynamics of The Earth’s Evolution, Elsevier, Amsterdam, 161-271.
  • Czechowski, L. (2006), Parameterized model of convection driven by tidal and radiogenic heating, Adv. Space Res. 38, 4, 788-793, DOI: 10.1016/j.asr.2005.12.013.
  • Czechowski, L., and J. Leliwa-Kopystyński (2005), Convection driven by tidal and radiogenic heating in medium size icy satellites, Planet. Space Sci. 53, 7, 749-769, DOI: 10.1016/j.pss.2005.01.004.
  • Davaille, A., and C. Jaupart (1993), Transient high-Rayleigh-number thermal convection with large viscosity variations, J. Fluid Mech. 253, 141-166, DOI: 10.1017/S0022112093001740.
  • De Pater, I., and J.J. Lissauer (2001), Planetary Sciences, Cambridge University Press, Cambridge.
  • Dumoulin, C., M.-P. Doin, and L. Fleitout (1999), Heat transport in stagnant lid convection with temperature- and pressure-dependent Newtonian or non-Newtonian rheology, J. Geophys. Res. 104, B6, 12759-12777, DOI: 10.1029/1999JB900110.
  • Durham, W.B., S.H. Kirby, and L.A. Stern (1998), Rheology of planetary ices. In: B. Schmitt, C. de Bergh, and M. Festou (eds.), Solar System Ices, Kluwer Academic Publishers, Dordrecht, 63-78.
  • Ellsworth, K., and G. Schubert (1983), Saturn icy satellite: Thermal and structural models, Icarus 54, 3, 490-510, DOI: 10.1016/0019-1035(83)90242-7.
  • Fischer, H.-J., and T. Spohn (1990), Thermal-orbital histories of viscoelastic models of Io (J1), Icarus 83, 1, 39-65, DOI: 10.1016/0019-1035(90)90005-T.
  • Forni, O., A. Coradini, and C. Federico (1991), Convection and lithospheric strength in dione, an icy satellite of Saturn, Icarus 94, 1, 232-245, DOI: 10.1016/0019-1035(91)90153-K.
  • Goldsby, D.L., and D.L. Kohlstedt (1997), Grain boundary sliding in fine-grained Ice-I, Scr. Mater. 37, 9, 1399-1405.
  • Grasset, O., and E.M. Parmentier (1998), Thermal convection in a volumetrically heated, infinite Prandtl number fluid with strongly temperature-dependent viscosity Implications for planetary thermal evolution, J. Geophys. Res. 103, B8, 18171-18181, DOI: 10.1029/98JB01492.
  • Hobbs, P.V. (1974), Ice Physics, Oxford University Press, New York.
  • Hussmann, H., F. Sohl, and T. Spohn (2006), Subsurface oceans and deep interiors of medium-sized outer planet satellites and large trans-neptunian objects, Icarus 185, 1, 257-273, DOI: 10.1016/j.icarus.2006.06.005.
  • Iess, L., N.J. Rappaport, P. Tortora, J. Lunine, J.W. Armstrong, S.W. Asmar, L. Somenzi, and F. Zingoni (2007), Gravity field and interior of Rhea from Cassini data analysis, Icarus 190, 2, 585-593, DOI: 10.1016/j.icarus.2007.03.027.
  • Kargel, J.S., and S. Pozio (1996), The volcanic and tectonic history of Enceladus, Icarus 119, 2, 385-404, DOI: 10.1006/icar.1996.0026.
  • Landau, L., and E. Lifszic (1958), Mechanics of Continuous Media, Państwowe Wydawnictwo Naukowe, Warszawa (in Polish, see also English version: Fluid Mechanics, Reed Educational and Professional Publ., Oxford, 2000).
  • Leliwa-Kopystyński, J., M. Maruyama, and T. Nakajima (2002), The water–ammonia phase diagram up to 300 MPa: Application to icy satellites, Icarus 159, 2, 518-528, DOI: 10.1006/icar.2002.6932.
  • McKinnon, W.B. (1998), Geodynamics of icy satellites. In: B. Schmitt, C. de Bergh, and M. Festou (eds.), Solar System Ices, Kluwer Academic Publishers, Dordrecht, 525-550.
  • Merk, E., D. Breuer, and T. Spohn (2002), Numerical modeling of 26Al-induced radioactive melting of asteroids concerning accretion, Icarus 159, 1, 183-191, DOI: 10.1006/icar.2002.6872.
  • Multhaup, K., and Spohn T. (2007), Stagnant lid convection in the mid-sized icy satellite of Saturn, Icarus 186, 2, 420-435, DOI: 10.1016/j.icarus.2006.09.001.
  • Ostro, S.J., R.D. West, M.A. Janssen, R.D. Lorenz, H.A. Zebker, G.J. Black, J.I. Lunine, L.C. Wye, R.M. Lopes-Gautier, S.D. Wall, C. Elachi, L. Roth, S. Hensley, K. Kelleher, G.A. Hamilton, Y. Gim, Y.Z. Anderson, R.A. Boehmer, W.T.K. Johnson, and the Cassini RADAR Team (2006), Cassini RADAR observations of Enceladus, Thethys, Dione, Rhea, Iapetus, Hyperion, and Phoebe, Icarus 183, 2, 479-490, DOI: 10.1016/j.icarus.2006.02.019.
  • Peale, S.J. (2003), Tidally induced volcanism, Celest. Mech. Dyn. Astr. 87, 1-2, 129-155, DOI: 10.1023/A:1026187917994.
  • Peltier, W.R., and G.T. Jarvis (1982), Whole mantle convection and the thermal evolution of the earth, Phys. Earth Planet. Int. 29, 3-4, 281-304, DOI: 10.1016/0031-9201(82)90018-8.
  • Plescia, J.B. (1985), Geology of Rhea. In: 16th Lunar and Planetary Science Conference, 11-15 March 1985, Lunar and Planet Institute, Houston, 665-666.
  • Prentice, A.J.R. (2006), Saturn’s icy moon Rhea: A prediction for its bulk chemical composition and physical structure at the time of the Cassini spacecraft first flyby, Publ. Astron. Soc. Aust. 23, 1, 1-11, DOI: 10.1071/AS05041.
  • Prialnik, D., A. Bar-Nun, and M. Podolak (1987), Radiogenic heating of comets by Al-26 and implications for their time of formation, Astrophys. J. 319, 993-1002, DOI: 10.1086/165516.
  • Robuchon, G., G. Choblet, G. Tobie, O. Čadek, C. Sotin, and O. Grasset (2010), Coupling of thermal evolution and despinning of early Iapetus, Icarus 207, 2, 959-971, DOI: 10.1016/j.icarus.2009.12.002.
  • Roscoe, R. (1952), The viscosity of suspensions of rigid spheres, Br. J. Appl. Phys. 3, 8, 267-269, DOI: 10.1088/0508-3443/3/8/306.
  • Rothery, D.A. (1992), Satellites of the Outer Planets, Clarendon Press, Oxford.
  • Schubert, G., T. Spohn, and R.T. Reynolds (1986), Thermal histories, compositions and internal structures of the moons of the solar system. In: J.A. Burns and M.S. Matthews (eds.), Satellites, University of Arizona Press, Tucson, 224-292.
  • Schubert, G., D.L. Turcotte, and P. Olson (2001), Mantle Convection in the Earth and Planets, Cambridge University Press, Cambridge.
  • Sharpe, H.N., and W.R. Peltier (1978), Parameterized mantle convection and the Earth’s thermal history, Geophys. Res. Lett. 5, 9, 737-740, DOI: 10.1029/GL005i009p00737.
  • Solomatov, V.S. (1995), Scaling of temperature- and stress-dependent viscosity convection, Phys. Fluids 7, 2, 266-274, DOI: 10.1063/1.868624.
  • Thomas, P.C. (2010), Sizes, shapes, and derived properties of the saturnian satellites after the Cassini nominal mission, Icarus 208, 1, 395-401, DOI: 10.1016/j.icarus.2010.01.025.
  • Turcotte, D.L., and G. Schubert (2002), Geodynamics, John Wiley & Sons, New York.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL1-0023-0029
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.